

Olefin Metathesis by Supported Metal Oxide Catalysts

Soe Lwin and Israel E. Wachs*

Operando Molecular Spectroscopy and Catalysis Laboratory Department of Chemical Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States

ABSTRACT: The literature of olefin metathesis by heterogeneous supported catalysts, both industrial-type supported metal oxides ($\text{ReO}_x/\text{Al}_2\text{O}_3$, $\text{ReO}_x/(\text{SiO}_2-\text{Al}_2\text{O}_3)$, $\text{MoO}_x/\text{SiO}_2$, $\text{MoO}_x/\text{Al}_2\text{O}_3$, $\text{MoO}_x/(\text{SiO}_2-\text{Al}_2\text{O}_3)$, WO_x/SiO_2 , and $\text{WO}_x/(\text{SiO}_2-\text{Al}_2\text{O}_3)$) and supported organometallic complexes, is comprehensively reviewed. The focus of this Review is supported metal oxide catalysts, but the well-defined supported organometallic catalysts literature is also covered because such model catalysts have the potential to bridge heterogeneous and homogeneous olefin metathesis catalysis. The recent world shortage of small olefin feedstocks has created renewed interest in olefin metathesis as a route to synthesizing small olefins and is reflected in the recent growth

of the patent literature. Despite the extensive application of supported metal oxides in industry for metathesis of small and large olefins, the molecular structures and oxidation states of the catalytic active sites, surface reaction intermediates, and reaction mechanisms of this important catalytic reaction have still not been resolved. The absence of reported in situ and operando spectroscopic studies from the olefin metathesis catalysis literature has hampered progress in this area. It appears from this literature review that the topic of olefin metathesis by heterogeneous supported metal oxide catalysts is still a relatively undeveloped research area and is poised for significant progress in understanding of the fundamental molecular details of these important catalytic systems in the coming years.

KEYWORDS: metathesis, olefins, catalysts, supported, rhenia, molybdena, tungsta, organometallic

INTRODUCTION

The olefin metathesis reaction was discovered by Anderson and Merckling at Dupont in 1955 when norbornene was polymerized to polynorbornene using lithium aluminum tetraheptyl and titanium tetrachloride catalysts¹ and would later be known as ring-opening metathesis polymerization.² Another Dupont researcher, Eleuterio, found in 1956 that ethylene, propylene, and butenes were produced when propylene was passed over an alumina-supported molybdena catalyst.² Natta independently discovered the ring-opening metathesis polymerization of cyclopentene with a molybdenum chloride catalyst.³ Banks and Bailey of Philips Petroleum discovered that silica-supported tungsten oxide catalysts efficiently perform olefin metathesis of small olefins⁴ and in 1964 pioneered the first large-scale olefin metathesis industrial process, called "Phillips Triolefin Process", that converted propylene to ethylene and 2-butene.^{4,5} That same year, a patent was awarded to British Petroleum (BP) for disproportionation of short- and long-chain olefins using supported Re₂O₇/Al₂O₃ catalysts.⁶ Scientists at Shell discovered the formation of liner α -olefins via ethylene oligomerization and olefin metathesis in 1968, which subsequently led to commercialization of the Shell Higher Olefin Process (SHOP) in 1977 by supported molybdenum oxide on alumina catalysts.⁷ Calderon and coworkers at Goodyear introduced the term "olefin metathesis" from the Greek words "meta" (change) and "thesis" (position)⁸

after observing production of 3-hexene and 2-butene from the self-reaction of 2-pentene in the presence of a homogeneous tungsten hexachloride catalyst. There is much renewed interest in olefin metathesis to meet the world's shortage of propylene via metathesis of ethylene and 2-butene and production of sustainable, green products.^{5,7,9–12}

The fascinating olefin metathesis reaction interconverts C = C bonds in hydrocarbons and can be tailored to produce a hydrocarbon of any length. It can be summarized as⁹

$$2RCH=CHR' \subseteq RCH=CHR + R'CH=CHR'$$

in which R and R' are (functionalized) alkyls or hydrogen atoms.

The three most common types of olefin metathesis reactions are (1) cross-metathesis (exchange of double bonds between linear olefins), (2) ring-opening metathesis polymerization (opening of a closed olefin ring followed by polymerization), and (3) ring-closing metathesis (opposite of ring-opening metathesis).^{9,10} The versatility of this novel reaction opened up new chemical routes that resulted in industrial applications of important petrochemicals, oleochemicals, polymers, and specialty chemicals.^{5,10–12} These commercial applications

```
Received:April 20, 2014Revised:June 8, 2014Published:June 30, 2014
```

ACS Publications © 2014 American Chemical Society

have sparked a tremendous growth in basic research in this field over the past few decades that culminated in the 2005 Nobel Prize in Chemistry to Chauvin, Grubbs, and Schrock for their fundamental contributions to the development of catalytic olefin metathesis in organic synthesis.¹²

The initial olefin metathesis catalysts developed in the early years were poorly defined multicomponent homogeneous and heterogeneous systems. To address this issue, extensive basic organometallic chemistry research was performed to obtain better fundamental insights into the olefin metathesis reaction.^{2,4,11} Employing homogeneous well-defined, singlecomponent organometallic catalysts, it was elegantly shown that olefin metathesis proceeds via metal carbene complexes.¹³ More recently, surface organometallic chemistry was also successfully employed to synthesize well-defined heterogeneous model supported tungsten, molybdenum, and rhenium organometallic catalytic active sites that exhibit high catalytic activity.¹⁴ Density functional theory (DFT) calculations have been performed on the model catalyst systems to understand the nature of the catalytic active sites and reaction mechanism at the molecular level.^{15–19} In contrast to the progress achieved with well-defined organometallic catalysts, there has been only limited progress for heterogeneous metathesis catalysts because the nature of the catalytic active sites typically has not been identified. The major industrial olefin metathesis processes, however, employ heterogeneous supported metal oxide catalysts (supported rhenia, molybdena and tungsta on Al₂O₃, SiO₂, and SiO₂-Al₂O₃ catalyst systems).^{2,4,7,9-11} This literature review will focus on olefin metathesis by heterogeneous catalysts to highlight what is currently known and what more needs to be done to fully understand the heterogeneous olefin metathesis catalytic systems.

Supported metal oxide catalysts consist of an active metal oxide component dispersed on an inactive oxide support.^{20,21} The dispersed metal oxide, the active component, can be present as isolated surface species, oligomeric surface species, clusters (<1 nm), or crystalline nanoparticles on a high surface area oxide support (\sim 100–500 m²/g).²¹

Initiation Mechanisms. Formation of the initial metal carbene species during olefin metathesis is claimed to proceed through one or more of the four initiation mechanisms, as shown in Scheme 1, for supported metal oxide catalysts.^{22–24}

All of the olefin metathesis initiation pathways except the pseudo-Wittig mechanism involve an oxidative addition reaction in which the catalytic active center is oxidized by losing two electrons.

Reaction Mechanism. The reaction mechanism for propylene metathesis was proposed by Chauvin on the basis of the results of homogeneous catalysis.^{13,25} It was subsequently supported by olefin titration results with supported rhenia/ alumna catalysts. In these experiments, the supported rhenia/ alumina catalyst was first activated with propylene or 2-butene. The surface intermediates were subsequently titrated with a second olefin (ethylene, propylene, or 2-butene) to form mixed olefin reaction products with deuterated olefins, confirming the mixed products. For example, 2-butene adsorption followed by ethylene adsorption produced propylene and some 2-butene reaction. The same number of sites was obtained by reacting either propylene or 2-butene with ethylene and would not have been the case if metal carbenes and metallacyclobutanes were not reaction intermediates, as shown in Scheme 2.²⁵

(A) 1-2 hydrogen shift mechanism

^{*a*}M represents the catalytic active site and S represents the oxide support²²⁻²⁴.

Scheme 2. Chauvin's Reaction Mechanism for Olefin Metathesis¹³ for the Self-Metathesis of Propylene to Ethylene and 2-Butene

SUPPORTED REO_x/AL₂O₃

ReO_x in Initial Oxidized Catalyst. Supported $\text{ReO}_x/\text{Al}_2\text{O}_3$ heterogeneous catalysts are prepared by impregnation of an aqueous rhenia precursor (HReO₄, (NH₄)ReO₄, etc.) on the alumina support, then dried and calcined at elevated temperatures in an oxidizing environment. The crystalline Re₂O₇ low melting temperature of 297 °C assures that rhenium oxide becomes homogeneously dispersed on the alumina support during calcination at ~500 °C. The supported rhenia/alumina catalyst system has been studied in its initial oxidized state under oxidizing dehydrated conditions prior to activation and exposure to the olefin metathesis reaction conditions, but there

is still not complete agreement about the structure of surface rhenium oxide species and oxidation states.

Early characterization with electron microscopy did not detect crystalline Re2O7 nanoparticles and concluded that if crystallites were present, they would have to be less than 2 nm.²⁶ Initial in situ Raman and IR studies of supported ReO_x/ Al₂O₃ catalysts determined that crystalline Re₂O₇ nanoparticles were not present and assigned the detected vibrations to dimeric surface (O=)3-Re-O-Re(=O)3 species.^{27,28} Subsequent in situ Raman and IR studies demonstrated that the vibrations correspond to two distinct isolated surface $(O=)_3$ Re-O-Al trioxo sites on the alumina support, with the relative concentration of the second species increasing with surface rhenia coverage.^{29,30} In situ IR spectroscopy measurements also revealed that at low rhenia loadings, surface ReO_x reacts first by consuming the most basic surface, OH groups and at higher loadings, the surface ReO_x consumes moderate and more acidic surface hydroxyls.^{29,31,32}

The different anchoring sites on the alumina surface account for the presence of two distinct surface ReO_x species on alumina.²⁹ As a consequence of the volatilization of rhenia oligomers,^{29–31} rhenia is completely dispersed as isolated species on the surface of oxide supports. The molecularly dispersed nature of supported rhenia sites on high-surface-area oxide supports assures that all characterization techniques, surface as well as bulk, provide only surface information about the supported ReO_x sites. In situ X-ray absorption near edge spectroscopy (XANES) studies concluded that surface rhenia on alumina under dehydrated, oxidizing conditions is present as Re^{7+} with trioxo (O=)₃ReO coordination^{33,34} as shown in Figure 1a.

Figure 1. Proposed molecular structures of surface ReO_x species with (a) trioxo ReO_4 and (b) dioxo ReO_5 coordination on Al_2O_3 .

More recent in situ XANES/EXAFS and DFT calculations concluded that the fully oxidized surface rhenia species may possess dioxo $(O=)_2 \text{Re}(-O-\text{support})_3$ penta coordination³⁵ on Al₂O₃, as shown in Figure 1b. The fitting of EXAFS data with only one surface ReO_x structure when in situ Raman and IR spectroscopy show that there are two distinct surface ReO_x species is problematic because XAS provides only an average molecular structure. Additional studies are clearly required to resolve this molecular structural issue surrounding the fully oxidized surface rhenia species. In a recent review, Okal and Kepinski concluded that "even though significant progress has been made in the understanding of the chemistry of supported rhenium oxide catalysts a detailed description of the [rhenia] species is still lacking and requires further study".³⁶

Activated ReO_x in Reducing Environments. Much less information is currently available about the partially reduced surface rhenia species on alumina. Both Shpiro et al.³⁷ and Yide et al.³⁸ studied the oxidation states of supported rhenia/ γ -Al₂O₃ catalysts by XPS under vacuum conditions and concluded that after hydrogen reduction, the initial Re⁷⁺ is transformed to a mixture of Re oxidation states. Balcar et al. concluded that activation of the catalyst in an inert environment results in a mixture of Re7+ and reduced surface rhenia species.³⁹ Fung et al. reduced a low loaded supported rhenia/Al₂O₃ catalyst with H₂ at elevated temperatures and monitored the changes with in situ EXAFS and XANES and concluded that both oxidized and reduced rhenia species coexisted after the reduction treatment.⁴⁰ The Re \hat{L}_3 XANES edge feature suggested that the oxidized rhenia resembled the Re⁴⁺ present in bulk ReO₂. Ronning et al. also concluded from in situ EXAFS analysis after H₂ reduction of low loaded supported rhenia/Al₂O₃ catalysts that both reduced and oxidized rhenia species were present with the former accounting for ~80% of total ReO_{x}^{41} Similar conclusions were reached by Bare et al. from in situ XANES Re L₃ and EXAFS measurements of low loaded supported rhenia/ Al_2O_3 catalysts after reduction by H_2 at 500–700 °C.³⁴ In situ FT-IR spectra with CO as the probe molecule also demonstrated that the surface rhenia species were partially reduced (Re^{*n*+}, with 0 < n < 7) upon exposure to olefins.^{42–45} Stoyanova et al. reported the presence of Re⁶⁺ species from ex situ UV-vis spectra of used catalysts.46 The presence of reduced surface rhenia species during olefin metathesis by supported rhenia/Al₂O₃ is consistent with the known activation of supported rhenia/Al₂O₃ catalysts in reducing environments of H₂,³¹ CO,⁴² hydrocarbons,⁴⁴ and photoreduction.⁴⁷

Surface Reaction Intermediates during Olefin Metathesis. Only limited information has appeared in the heterogeneous catalysis literature about the nature of the hydrocarbon surface reaction intermediates during the olefin metathesis reaction by supported rhenia/alumina catalysts. Exposure of supported rhenia/Al₂O₃ catalysts to isobutene⁴² and *n*-butene⁴⁸ at around room temperature and after evacuation gave rise to hydrocarbon fragments with CH₃ vibrations in the FT-IR spectra. The same surface CH₃ vibrations, however, were also observed with Re-free Al₂O₃, suggesting that the CH₃ fragments may be formed by the strong surface Lewis acid sites of the alumina support.48 Furthermore, the catalyst was evacuated for 1 h before the FT-IR spectra were recorded. Such treatment would be expected to result in reaction and desorption of any reactive surface intermediates. In situ FT-IR under flowing propylene at 60 $^\circ C$ gave rise to vibrations from adsorbed propylene, ethylene, 2butene, and a band at 1450 cm⁻¹ characteristic of aliphatic C-H groups.48

Initiation and Reaction Mechanisms. The most detailed mechanistic studies of olefin metathesis by supported rhenia/ Al₂O₃ catalysts with chemical probe reactions have been reported by Coperet and collaborators.²³ The 1-2 hydrogen shift and H-assisted metathesis reaction mechanisms were ruled out by the absence of 3-methyl-2-pentene from the selfmetathesis of cis-2-butene. The allyl mechanism was ruled out by the metathesis of (Z)-stilbene with ethylene to form styrene, a transformation that does not require the participation of allyl H atoms. It was concluded from these chemical probe studies that the pseudo-Wittig metathesis mechanism is the most probable for formation of the necessary initial surface carbene species. Earlier studies by Farona et al., however, did not discard the allylic mechanism.²⁴ Both Coperet et al.²³ and Farona et al.²⁴ concluded that ethylene cannot initiate metathesis owing to the absence of $H_2C=CD_2$ as a product of the cross metathesis of C_2H_4 with C_2D_4 . This is also in agreement with the IR studies of Boelhouwer et al., who claimed ethylene does not reduce a $\text{ReO}_x/\text{Al}_2\text{O}_3$ catalyst.⁴⁸ As mentioned in the previous section, Chauvin proposed carbene

and metallacyclobutane reaction intermediates from homogeneous catalysis and titration studies.^{13,25} Direct determination of the proposed surface intermediates for this catalytic system still awaits confirmation.

Number of Catalytic Active Sites. There is a continued discussion in the metathesis catalysis literature about the number of activated sites present and participating during steady-state olefin metathesis because not all the supported ReO_x sites on alumina are claimed to be active for olefin metathesis.^{5,25,31} *Indirect* measurements based on kinetic analysis of the olefin metathesis reaction over supported rhenia/alumina catalysts and quantitative titration with chemical probe molecules (NO, CO and bases) of activated catalysts suggest that only a small number of the supported rhenia sites participate in the metathesis reaction at room temperature.^{5,25,31} Chauvin et al. quantitatively counted the number of catalytic active sites present after olefin metathesis at room temperature for supported ReO_x/Al₂O₃ catalysts by chemical titration. After initial chemisorption of one olefin, evacuation of the catalyst system for 4-6 h and subsequent titration of the resulting surface reaction intermediates with a second olefin formed the mixed metathesis reaction products.²⁵ The same number of sites was reported to be involved in the reaction, regardless of whether propylene or 2-butene was used as an activator.²⁵ The number of sites did not depend on the contact time of the second reactant, ethylene, but on its partial pressure. This titration method is most likely undercounting the number of participating sites because (i) the catalyst is evacuated for 4-6 h, during which metathesis and desorption of the first olefin can take place and (ii) it assumes that the titration with the second olefin consumes all the surface reaction intermediates at rather mild temperatures. Without direct observation of the molecular events that take place during this titration method, it is not known if these assumptions are, indeed, representative of the actual reaction pathway. Yide et al.,³⁸ however, demonstrated that the number of activated surface ReO_x sites on alumina can be significantly increased by activation with olefins at elevated temperatures, which indicates that the number of activated sites strongly depends on the pretreatment conditions. Using high throughput methods, Stoyanova et al. claimed that the calcination procedure (temperature and time), pretreatment conditions (temperature and gas) and reaction temperatures affect both conversion and selectivity.⁴⁶ This indeed suggests that the number of activated sites determined with room temperature activation is only a lower limit and that a much higher number of activated sites can be accessed by activation at elevated temperatures and with inclusion of promoters.

Kinetics. Kinetic studies of propylene metathesis by Kapteijn and Mol^{49} showed that the reaction is pseudo-firstorder in propylene partial pressure and that the reaction rate increases with ReO_x loadings as a result of surface heterogeneity of the alumina support. The olefin metathesis catalytic activity of supported ReO_x/Al_2O_3 catalysis is strongly dependent on the rhenia loading on the alumina support.³¹ For loadings below ~6% ReO_x/Al_2O_3 (0.75 Re/nm^2), the activity is very low. Optimal catalytic activity is observed for ~14–18% ReO_x/Al_2O_3 (~2.4 Re/nm^2), which corresponds to the maximum loading of surface rhenium oxide that can be anchored on an alumina support.³¹

The nonlinear relationship between the surface rhenia loading and olefin metathesis activity is most probably related to the relative abundance of two different surface rhenia species at these loadings, which in turn suggests that the surface rhenia species anchored on the neutral and more acidic surface hydroxyl sites may be more active for metathesis than the surface rhenia species on the basic surface hydroxyls.³¹ Propylene metathesis by supported ReO_x/Al₂O₃ catalyst exhibited an overall activation energy of 25–40 kJ/mol.⁴⁹ The exponential increase in the reaction rate as a function of the rhenia content was claimed to result from a combined increase in the reaction rate and equilibrium constants, *k* and *K*, respectively.⁴⁹ However, as noted above, increasing the reaction temperature also increases the number of activated rhenia sites, which further complicates the temperature dependence of the rate and equilibrium constants.^{38,46}

Surface Acidity. The roles of surface Brønsted and Lewis acid sites on the alumina support upon olefin metathesis by supported rhenia/alumina catalysts have been studied extensively. Earlier researchers were of the opinion that the presence of surface Brønsted acid sites contributed to the metathesis activity of supported rhenia/Al₂O₃ catalysts.^{50–54} Subsequently, attention has focused on the presence of neighboring Lewis acidic Al sites that are enhanced by the strength of the Brønsted acidity of silica–alumina.^{55,56} This realization caused the metathesis literature to focus on the interaction of surface rhenia species with adjacent surface Lewis acid sites as being responsible for olefin-induced activation of rhenia catalysts.^{14,35,57} The entire role of acidity upon olefin metathesis still needs to be resolved.

Alumina Support Type. Several researchers have also examined the role of mesoporous Al₂O₃ supports for olefin metathesis by supported rhenia/alumina. The Balcar and Onaka research groups have claimed that use of mesoporous alumina supports results in higher activity (as much as $20\times$) due to a higher concentration of surface Lewis acid sites, a lower concentration of basic surface OH groups, and better stabilization of surface reaction intermediates.^{39,58-64} Onaka et al. also reported EXAFS studies, which found similar Re-O bonding for ReO_x supported on both mesoporous and regular alumina. This result suggests that the same surface rhenia species are present on both types of alumina supports and that the enhanced performance derives from use of the mesoporous support.⁶² The improvement, however, seems to be more significant in metathesis of functionalized olefins rather than that of linear olefins.^{57,62} In contrast to Balcar et al. and Onaka et al., Bregeault et al. reported that mesoporous supports do not have an advantage over conventional alumina supports.⁶⁵

Promoters. Promoters are claimed to increase the activity of $\text{ReO}_x/\text{Al}_2\text{O}_3$ catalysts by either maintaining Re in a desirable oxidation state,⁶⁶ increasing support acidity,⁹ or changing local Re structures.⁶⁷ Some of the promoters that have been reported are SiO_{2^9} (CH₃)₄Sn,^{31,67} P₂O₅,⁶⁸ B₂O₃,⁶⁹ V₂O₅,^{45,69} MoO₃,^{45,69} and WO₃.^{45,52} Although the enhancement of catalytic activity by promoters is accepted, additional fundamental studies are still required to understand the promotion mechanism(s).

ReO_x/(SiO₂-Al₂O₃). The same surface ReO_x structure is reported to be present on silica–alumina supports as on alumina, but a different structure is present on silica.³⁵ Studies by Mol et al. found that activity decreases with an increase in ReO_x on SiO₂-Al₂O₃, contrary to the Al₂O₃ support.³¹ At low rhenia loadings (<0.5 Re/nm²), supported ReO_x/(SiO₂-Al₂O₃) catalysts are 3–6 times more active than supported ReO_x/Al₂O₃ catalysts, and supported ReO_x/SiO₂ catalysts are inactive for olefin metathesis.^{31,35,70} At low rhenia loadings, ReO_x initially anchors by reacting with Si–(OH)–Al bridging hydroxyls, resulting in electron-poor rhenium sites that are claimed to be highly active sites.³¹ With increasing rhenia loading, the additional ReO_x is stabilized at Si-OH hydroxyls that result in inactive \equiv Si-O-ReO₃ sites.³¹ A recent paper by Bouchmella and Debecker et al. used a nonhydrolytic sol-gel (NHSG) method with Cl precursors and diisopropyl ether to prepare mesoporous Re-Si-Al catalysts Bouchmella et al.⁷¹ These catalysts displayed superior activity over catalysts prepared via the incipient wetness impregnation method as a result of their superior properties, such as acidic sites, well dispersed ReO_x species, and high surface areas. Interestingly, the loss of rhenia is claimed to be prevented by adding more alumina. The maximum activity is observed at a Si/Al ratio of 0.3.⁷¹ The simultaneous variation of several experimental parameters complicates determination of the origin of the catalytic enhancement for olefin metathesis, and systematic studies are required to fully understand the catalyst structureactivity relationships for supported $\text{ReO}_r/(\text{SiO}_2-\text{Al}_2\text{O}_3)$ catalysts.

Supported Organometallic Catalysts. Model ReO_x organometallic catalysts can provide fundamental insights about the reactive intermediates and reaction mechanism of olefin metathesis. Hermann et al. discovered in 1991⁷² that methyltrioxorhenium (MTO), CH₃ReO₃, supported on silica–alumina is very active for metathesis of functionalized olefins. The same product selectivity is obtained for propylene metathesis by the model supported MTO/Al₂O₃–SiO₂ and conventional supported ReO_x/Al₂O₃ catalysts. Coperet et al. concluded from solid-state ¹³C CPMAS NMR and DFT calculations for CH₃ReO₃ supported on alumina that the surface Al_sCH₂ReO₃ intermediate located at octahedral alumina sites represents the catalytic active species rather than the majority surface Al_sReO₃CH₃ species.^{73,74} The active surface Al_sCH₂ReO₃ complex is structurally similar to the Tebbe reagent, which was the first well-defined metathesis catalyst and is used in carbonyl methylenation.^{73,74}

A different activated structure of CH₃ReO₃ was proposed by Scott et al. on the basis of XAS measurements of ZnCl₂modified CH₃ReO₃/Al₂O₃.⁷⁵ In this proposal, Lewis acidic Ål centers are claimed to be the most favorable sites for CH₃ReO₃ chemisorption. The use of a mixed silica-alumina support instead of alumina is claimed to result in elongation of one of the Re=O bonds in CH₃ReO₃ via an interaction with an Al site.⁷⁶ Coperet et al. also reported that modifying the Al₂O₃ support by treatment with Si(allyl)(CH₃)₃ prior to impregnation with CH₃ReO₃ improves the cis/trans ratio of 2-butenes for propylene metathesis, mainly through an increase in the desorption kinetics.^{77,78} Although the supported CH₃ReO₃/ Al₂O₃ catalyst does not exhibit an induction period and is ~ 10 times more active than the conventional supported ReO₄/ Al₂O₃ catalyst system, it deactivates much more rapidly, a clear indication that supported organometallic catalysts are not identical to traditional supported ReO_x/Al₂O₃ catalysts.⁷⁹

As mentioned above, silica supported rhenium complexes, rhenium oxide, and MTO typically do not exhibit olefin metathesis activity.^{5,9,11,35,72} The *first* successful synthesis of a highly active silica supported \equiv SiO-Re(\equiv C-Bu-t)(\equiv CH-Bu-t)(CH₂Bu-t) olefin metathesis catalyst was reported by Coperet and Basset et al. in 2001.⁸⁰ Structural knowledge of these grafted rhenium compounds having d⁰ configurations and alkylidene ligands was drawn from the analogous homogeneous systems.⁸⁰ The silica support was partially dehydroxylated at high temperatures (700 °C) before impregnation of the Re complex to both stabilize the ligands and remove surface hydroxyls that promote double-bond isomerization.^{80,81} The hydrocarbyl complex Re(\equiv C-Bu-t)(=CH-Bu-t)(CH₂Bu-t)₂ was used as a catalyst precursor, and characterization with solidstate ¹³C and ¹H NMR along with its ability to also metathesize alkynes allowed proposing the molecular structure as \equiv SiO-Re(\equiv C-Bu-t)(=CH-Bu-t)(CH₂Bu-t) catalyst.⁸⁰ Given that these compounds already possess Re=carbenes, the silicasupported Re(\equiv C-Bu-t)(=CH-Bu-t)(CH₂Bu-t) catalyst does not require activation because it already contains Re= carbenes and is even compatible with functionalized olefins without coactivator such as Me₄Sn required for Re₂O₇/Al₂O₃.

Patents. The patent literature for olefin metathesis by supported rhenia/Al₂O₃ catalysts has been quite active since $^{82,84-90,93,97,99,102-104,110}$ mesoporous alumina, $^{82,84-90,93,97,99,102-104,110}$ mesoporous alumina, and silica–alumina.^{96,112} The alumina-based supports are sometimes treated with an inorganic halide (such as FeCl₃, CuCl₂, or ZnCl₂.)^{90,99,102,113} and promoters that include B_2O_3 ,⁹⁶ SnO₂,¹¹³ Bu₄Sn,¹⁰⁸ Cs₂O,¹¹⁸ Nb₂O₅,^{106,107} and Ta₂O₅.⁸⁶ The function of the Cl is most probably to remove the surface hydroxyls that are claimed to have a negative effect on the olefin metathesis reaction.^{75,120,121} There is also emphasis on maintaining a very low concentration of heteroatom hydrocarbons in the feed because they negatively impact the olefin metathesis catalytic activity, presumably by site blocking.⁸⁴ One patent claimed that cofeeding H₂ enhances metathesis catalytic activity and allows operation at lower temperatures. Inclusion of H₂ could either minimize coke deposition or increase the number of reduced catalytic active sites.⁹¹ Regeneration of supported rhenia/ alumina is achieved by heating in an O_2 -containing gas to >400 $^{\circ}\text{C}^{107,122}$ and treatments with H_2O_2, NaOH, KOH, or $\rm NH_4OH.^{122}$ The above olefin metathesis patent literature reveals the methodology employed by industry in preparing commercial supported rhenia/Al₂O₃ catalysts and some of their general concerns about how to optimize performance but does not provide any fundamental insights about the supported rhenia catalytic active sites during the different stages of the catalyst evolution: (i) synthesis (effect of support characteristics, promoters, poisons, and Re precursors), (ii) activation (effect of air, inert, H₂, and CO), (iii) olefin metathesis reaction conditions (effect of temperature and feed composition), and (iv) regeneration (effect of air, steam, H_2 , etc.).

Summary of ReO_x/Al₂O₃ Catalysts. Although supported ReO_r/Al_2O_3 catalysts are currently not employed for large industrial applications because of the high price of rhenium and its volatility, this catalyst system has been studied extensively as a result of its high selectivity and catalytic activity at room temperature. Progress has been made in the understanding of ReO_x/Al₂O₃-catalyzed olefin metathesis, but many key details continue to elude catalysis researchers in this field. These include the (i) molecular structure of the initial oxidized isolated surface ReO_r species, (ii) molecular structure(s) and oxidation state(s) of activated surface ReO_x site(s) during olefin metathesis, (iii) number of activated catalytic sites during olefin metathesis, (iv) activation mechanism, (v) surface reaction intermediates, (vi) reaction mechanism, and (vii) promotion mechanism(s). The absence of direct characterization studies of supported ReO_x/Al₂O₃ catalysts during olefin metathesis has hampered progress in the understanding of this catalytic system. The availability of modern in situ and operando spectroscopy instrumentation (XAS, ¹³C NMR, high field EPR, near atmospheric pressure-XPS, Raman and IR vibrational

studies with isotopes) complemented with DFT calculations should allow resolution of the above issues in the near future.

SUPPORTED MOO_x SYSTEMS

Supported molybdena catalysts are active for olefin metathesis at moderate reaction temperatures (25-200 °C) and are usually prepared from aqueous impregnation of ammonium salts, such as ammonium heptamolybdate, via incipient wetness impregnation.^{123,124} Other preparative methods include sol–gel techniques,¹²⁵ flame spray pyrolysis,¹²⁶ and even spontaneous thermal spreading of crystalline MoO₃.¹²⁷ The resulting supported molybdena heterogeneous catalyst systems have been well characterized in their initial oxidized states under oxidizing dehydrated conditions prior to activation and exposure to the olefin metathesis reaction conditions. The molecular structures of the fully oxidized surface MoO_x sites have been shown to be independent of synthesis method below the maximum dispersion or monolayer coverage limit.^{20,128,129} Nonaqueous impregnation techniques employing molybdenum organometallic complexes have also been used to prepare supported molybdena catalysts with a variety of well-defined surface functionalities that are analogous to those of homogeneous metathesis catalysts.^{130–132}

 MoO_3/SiO_2 . Supported MoO_3/SiO_2 catalysts are about an order of magnitude less active for olefin metathesis than supported MoO_3/Al_2O_3 catalysts;⁷⁰ however, the dehydrated supported MoO_3/SiO_2 system is viewed as a model metathesis catalyst because only isolated surface MoO_x sites are generally thought to be present below the maximum dispersion limit of molybdenum.¹³³⁻¹³⁶

Supported MoO_x/SiO_2 in Initial Oxidized Catalyst. The dehydrated, fully oxidized surface MoO_x species on SiO_2 have experimentally been characterized with in situ UV-vis,^{123,133,136} Raman,^{20,123,133,136-139} XAS,¹³⁶⁻¹³⁹ isotopic ¹⁸O⁻¹⁶O exchange,¹⁴⁰ and IR spectroscopy^{133,136} and have been found to be present as isolated dioxo (O=)₂MoO₂ and mono-oxo O=MoO₄ species, as depicted in Figure 2. The

Figure 2. Structures of MoO_x species on SiO_2 . Surface MoO_x dioxo (a) and mono-oxo (b) species coexist with MoO_3 crystals (c) at high coverage.

surface dioxo $(O=)_2MoO_2$ structure represents the majority species (see Figure 2,b, respectively).^{128,129,133–136} Above the maximum dispersion limit, crystalline MoO₃ NPs also form (see Figure 2c).^{128,133,136} One study has claimed that both isolated and oligomeric surface MoO_x sites are present on SiO₂ (SBA-15) from in situ Raman, UV–vis, and XAS measurements.¹³⁹ The absence of pronounced Mo–Mo features in the 3.2–4.0 Å range in the EXAFS second coordination sphere, present for crystalline MoO₃, does not support the assignment of a significant amount of surface oligomers. A more recent study with a similar MoO₃/SiO₂ catalyst employing SBA-15 employed more extensive structural characterization (in situ Raman, IR, UV–vis, XANES, EXAFS, and NEXAFS), however, found no evidence for surface MoO_x oligomers and concluded that the surface MoO_x species on SiO₂ are primarily present as isolated surface dioxo MoO_4 species.¹³⁶ DFT calculations support the presence of two isolated surface MoO_x structures on SiO₂ and the greater stability of the isolated surface dioxo MoO_4 than the mono-oxo MoO_5 sites.^{16,134}

Activated MoO_x/SiO₂ in Reducing Environments. The nature of surface MoO_x sites during olefin activation and metathesis reaction are still not known because in situ and operando spectroscopy studies during catalyst activation and olefin metathesis reaction conditions have not been reported.¹⁴¹⁻¹⁴⁶ Yermakov et al. examined a series of organometallic complexes on SiO₂, produced from Mo(π allyl)₄ and containing different Mo oxidation states, for selfmetathesis of propylene at 90 °C. They concluded that the initial Mo⁴⁺ complex leads to the highest metathesis activity, whereas initial Mo⁶⁺ and Mo²⁺ are inactive for the metathesis of propylene at 90 $^{\circ}$ C, but supporting evidence that the initial oxidation states were unchanged during the metathesis reaction was not provided.¹³⁰ Kazansky et al. activated a supported MoO_3/SiO_2 catalyst by photoreduction in the presence of CO, which allowed determination of the number of reduced sites by quantifying the CO₂ formed, with subsequent cyclopropane adsorption. It was concluded that surface Mo⁴⁺ species are the active metathesis sites because their concentrations, measured with in situ UV–vis spectroscopy, related relatively well to catalytic activity. $^{\rm 142,143}$

Zhang et al. examined the oxidation states of MoO_x/SiO_2 catalysts pretreated under H_2 , H_2-N_2 and H_2 conditions with ex situ XPS and EPR.¹⁴¹ A correlation between the room temperature quenched EPR Mo^{5+} signals and propylene conversion suggested that the Mo^{5+} sites are the catalytic active sites. Two distinct Mo^{5+} sites were detected: a distorted MoO_5 square pyramidal and a distorted MoO_6 coordination, with the former coordination suggested to be the catalytic active site. The optimum H_2 pretreatment was found to be 400–450 °C; over-reduction at higher temperatures was proposed to form Mo^{4+} , which was thought to be responsible for the reduced activity.¹⁴¹ DFT calculations have concluded that surface dioxo MoO_4 , and not the surface mono-oxo MoO_5 , species are the energetically favored precursors of the catalytic active sites for olefin metathesis.¹⁶

Surface Reaction Intermediates during Olefin Metathesis. No in situ and operando studies during olefin metathesis with supported MoO_x catalysts have been reported. Consequently, surface reaction intermediates have not yet been reported for MoO_x/SiO_2 catalysts. Kazansky et al. reported the first in situ IR detection of surface Mo=CH2 intermediates from cyclopropane adsorption on photoreduced ${\rm MoO}_x/{\rm SiO}_2$ catalysts. 143,144 Adsorption of ethylene on a CO-treated photoreduced MoO_x/SiO₂ catalyst resulted in two UV-vis bands at ~480 and ~590 nm, as well as IR bands at 2985, 2955, 2930, and 2870 cm^{-1} . These bands were tentatively assigned to molybdenum cyclobutane and π -bonded propylene complexes, respectively.^{144,145} Catalyst deactivation was claimed to result from transformation of the active surface molybdenum cyclobutane intermediates into inactive surface π -bonded propylene.¹⁴⁵ These very early in situ IR and UV-vis spectroscopy studies, however, were not taken during either catalyst activation with olefins or olefin metathesis reactions. More detailed fundamental insights came from DFT calculations that concluded that the IR bands reported by Kazansky et al. mostly correspond to a stable square-pyramidal (SP)

Figure 3. Structures of surface MoO_x species on Al_2O_3 . (a) Isolated dioxo MoO_4 , (b) oligomeric mono-oxo MoO_5 , and (c) crystalline MoO_3 NPs on surface MoO_x monolayer.

molybdenum cyclobutane rather than a more reactive trigonal bipyramidal (TBP) molybdenum cyclobutane.¹⁶

Initiation and Reaction Mechanisms. Surface isopropoxide species were recently claimed to be the major surface reaction intermediates during the initial stage of propylene metathesis by supported MoO_x/SBA-15 catalysts (activation of surface Mo^{6+} sites by reduction to Mo^{4+} and formation of a C_3 oxygenate).²² This conclusion was based on the similarity of IR bands for the surface intermediates formed by adsorption of propylene and isopropyl alcohol as well as their similar heats of adsorption. The IR vibration for the surface isopropoxide C-O bond, however, was not detected for the photoreduced catalysts described in the previous section, which suggests differences between the photoreduction and initial olefin activation treatments.^{143,144} Transient isotopic switching experiments, however, would allow for better discrimination between surface reaction intermediates and possible spectator species. To date, DFT calculations start with a surface Mo=CH₂ intermediate, do not address the initiation mechanism, and suggest that olefin metathesis occurs via a mechanism that proceeds through a molybdenum cyclobutane intermediate.¹⁶

Number of Catalytic Active Sites. For the MoO_x/SBA-15 system, the number of active sites after activation at 50 °C with propylene (H_2C =CHCH₃) was determined to be <2% of the total surface MoO_x sites. This conclusion was based on perdeuteroethylene titration of the surface intermediates that remained on the catalyst when the reaction was stopped.²² Bykov et al. investigated the metathesis of α -olefins on heterogeneous supported binary (MoCl₅/SiO₂-Me₄Sn) and ternary (MoCl₅/SiO₂-Me₄Sn-ECl₄, E = Si or Ge) catalysts and concluded that up to 6% of the Mo atoms are active at 50 °C without applying evacuation or desorption steps.¹⁴⁶ Subsequently, these workers reported that 13% of the Mo sites present in (MoOCl₄/SiO₂)-SnMe₄ catalysts participate in the metathesis reaction.¹⁴⁷ As mentioned above, there are inherent assumptions in the chemical titration approach that may be undercounting the number of activated MoO_x catalytic sites.

Kinetics. The propylene metathesis reaction rate, normalized per unit of surface area and expressed as millimoles/ (meter²-second), for supported $MoO_x/SBA-15$ catalysts as a function of MoO_x loading exhibited an exponential rise with increasing surface MoO_x coverage until crystalline MoO_3 nanoparticles were present at high coverage.¹³⁶ This strongly increasing reactivity trend was attributed to increasing distortion of the isolated dioxo surface MoO_4 sites with higher surface MoO_x coverage on SBA-15. Such distortion is due to lateral interactions between the MoO_x sites and is also related to the accessibility of anchoring on 6-, 8- or 10-membered rings. The surface MoO_x sites were also proposed to interact with adjacent Brønsted acid sites for activation,¹³⁶ but Brønsted acid sites are not significant for siliceous materials, such as SBA-15. The reactivity rapidly decreased with increasing amounts of crystalline MoO₃ nanoparticles, which reflects the low activity of MoO₃ nanoparticles and probably also agglomeration of a portion of the surface MoO_x catalytic active sites.¹²⁸ Earlier studies by Mol et al. observed a similar trend for the MoO_x/SiO₂ system, with the catalytic activity reaching a maximum at 1.0 Mo atoms/nm² and decreasing at higher molybdena loadings.^{70,136}

Supported Organometallic Catalysts. Coperet and Shrock et al. showed that silica-supported organometallic Mobased catalysts having the general formula $[(Y)M (\equiv ER)(=$ CHtBu)(X) (Y = SiO) (X = CH_2tBu , OR or NR2; with M = Mo with ER = NR) out-performed their homogeneous analogues.¹³¹ As mentioned in the previous section about supported organometallic ReO_x catalysts, these supported organometallic complexes are grafted by replacing one of the anionic X ligand with a siloxy ligand^{131,132} and normally remain intact on the SiO₂ support. In situ ¹³C CPMAS NMR showed that the Mo-supported organometallic complexes react via the same surface alkylidene and metallacyclobutane intermediates as observed in homogeneous catalysts.^{131,132} Although the model silica-supported surface organometallic catalysts have provided many molecular details about olefin metathesis catalytic active sites and surface reaction intermediates, there is still a materials gap between the surface organometallic catalysts and industrial-type heterogeneous supported metal oxide catalysts because of the special ligands used to stabilize the surface organometallic catalysts on SiO₂.

MoO₃/Al₂O₃. Supported MoO_x/Al₂O₃ catalysts find industrial application in the SHOP for metathesis of long-chained olefins $(C_2H_4-C_{20}H_{40})$.^{5,7,9} The supported MoO_x/Al₂O₃ catalysts are at least 10 times more active than the supported MoO_x/SiO₂ catalysts in the same temperature range, reflecting their easier reduction or activation.^{9,70}

 MoO_x in Initial Oxidized Catalyst. The surface MoO_x structures present for fully oxidized, dehydrated supported MoO_3/Al_2O_3 catalysts have been established in the past few years from extensive in situ spectroscopic measurements (Raman, ^{123,137,148,149} UV–vis, ¹²³ XAS^{137,148,149}) and DFT calculations. ^{150,151} At low surface molybdena coverage (<20% of monolayer), isolated surface dioxo (O=)₂MoO₂ species dominate, and at high surface coverage, both isolated surface dioxo MoO₄ and oligomeric mono-oxo O=MoO₄ species coexist on the alumina support, as indicated in Figure 3. Above monolayer coverage (4.6 Mo atoms/nm²), crystalline MoO₃ NPs are also present on top of the surface MoO_x species because there are no anchoring surface Al–OH sites remaining. ¹⁵²

Activated MoO_x in Reducing Environments. Less is known, however, about the oxidation state and molecular structure of supported MoO_x/Al_2O_3 catalysts that have been activated or exposed to olefin metathesis reaction conditions. The earliest reported spectroscopic characterization for supported MoO_3/Al_2O_3 involved initially exposing the catalysts

to the propylene metathesis reaction at 200 °C and subsequently examining the catalysts with ex situ XPS and EPR spectroscopy.^{153,154} It was concluded that activated sites formed only from initial Mo⁶⁺ and Mo⁴⁺ species while other oxidation states were inactive, but measurements were performed after metathesis and exposure to air that can oxidize the catalysts. Carbon monoxide reduction of supported $MoO_3/$ Al_2O_3 catalysts suggested that surface MoO_x sites anchored at basic surface hydroxyls do not reduce at 500 °C, but surface MoO_x sites anchored at nonbasic surface hydroxyls reduce to approximately Mo4+.155 From ex situ solid-state27Al NMR of molybdena-supported mesoporous Al₂O₃, it was proposed that only surface MoO_x sites on surface AlO_6 sites are most active for olefin metathesis,¹⁵⁶ but ambient moisture may have affected the coordination of the surface AlO_x sites. The importance of the coordination of the surface alumina sites where the active surface MoO_x species are anchored is supported by DFT calculations.¹⁵⁻¹⁸ The DFT calculations suggest that the most active surface MoO_x sites possess pseudo-MoO₄ coordination and are anchored to AlO₆ sites on the (100) surface of the Al_2O_3 support.

Surface Reaction Intermediates during Olefin Metathesis. DFT studies also suggest that the less stable surface Mo-cyclobutane intermediates anchored to the surface AlO₆ sites are responsible for their high reactivity.¹⁵ Early in situ studies by Olsthoorn and Moulijn stated that propylene is π bonded on both oxidized and CO-reduced MoO_x/Al₂O₃ catalysts.¹⁵⁷ From the position of the 1600 cm⁻¹ C=C bond, which is lower than that (1645 cm⁻¹) observed in adsorption of propylene on pure Al₂O₃, it was concluded that adsorption is reversible on the MoO_x/Al₂O₃ catalyst, and the resulting π bonded complex could be an intermediate during the reaction.¹⁵⁷ The absence of transient experiments, however, did not allow for discrimination between surface reaction intermediates and possible spectator species.

Initiation and Reaction Mechanisms. From isotopic Dlabeled studies, it was proposed that olefin metathesis of long chain olefins by supported MoO_x/Al_2O_3 catalysts is initiated and proceeds via surface π -allyl species, ¹⁵⁸ suggesting that C–H bonds may be involved in metathesis by long-chain olefins. Recent DFT calculations, however, suggest that allylic CH bonds are not required for catalyst activation for small olefins and that the pseudo-Wittig mechanism is the most likely activation mechanism.¹⁵⁹

Number of Catalytic Active Sites. The percentage of catalytic active surface MoO_x sites on alumina that participate in olefin metathesis has received much attention by debates in the literature. Early studies by Burwell et al. for supported $Mo(CO)_6/Al_2O_3$ concluded less than 1% of surface MoO_r sites are involved in the metathesis reaction at 53 °C.^{160"} This conclusion is in sharp contrast to the findings of Hightower et al., who found from NO poisoning experiments that for cobaltpromoted supported MoO₃/Al₂O₃ catalysts, ~15% of surface MoO_x sites were active at room temperature.¹⁶¹ Handzlik et al. counted the number of activated surface MoO_x sites present for supported MoO_x/Al_2O_3 catalysts during propylene metathesis by either slightly increasing the temperature or switching the flow to argon for tens of minutes. They found that only $\sim 1\%$ of MoO_x sites were activated at ~50 °C; however, ~4.5% of MoO_x sites were activated for a tin-promoted supported $MoO_x/Al_2O_3-SnMe_4$ (Mo/Sn = 1.2) catalyst at the same temperature.¹⁶² The lack of consistency in the reported number of catalytic active surface MoO_x sites in each of the above

studies is most likely related to the different catalysts and surface MoO_x coverages employed. Furthermore, all the measurements were performed close to room temperature; the influences of activation temperature and olefin partial pressure on the number of activated surface MoO_x sites were not examined. As mentioned above, there are inherent assumptions in the chemical titration approach that may be undercounting the number of activated MoO_x catalytic sites. Direct spectroscopic observations are needed to determine how much these assumptions deviate from the actual situation.

Kinetics. The supported MoO_x/Al_2O_3 catalysts exhibit a maximum in steady-state activity for metathesis of small olefins at approximately monolayer coverage of surface MoO_x sites.^{70,127} This suggested to most investigators that the surface MoO_x sites, either isolated or oligomeric, are probably the precursors to the catalytic active sites and not crystalline MoO_3 or $Al_2(MoO_4)_3$ nanoparticles because the latter tend to form above monolayer coverage.^{70,124–127,130} The individual contributions of the isolated and oligomeric precursor surface MoO_x sites on alumina in generating activated sites for olefin metathesis, however, is still not known. Grunert and Minachev reported that the reaction order is 0.8 in propylene at 200 °C.¹⁵⁴ The apparent activation energy was reported to be 37–30 kJ/mol and decreased slightly with increasing Mo loadings.¹⁵⁴

Promoters. Some of the promoters added to the MoO_{\star}/Al_2O_3 system include SiO_2 , ^{124–127} and ECl_4 (E = Si or Ge), ¹⁴⁷ CoO, ¹⁶¹ and $(CH_3)_4Sn$. ¹⁶² $(CH_3)_4Sn$ is claimed to increase the number of Mo active sites. ¹⁶² The promotion mechanisms of the other promoters still require further studies for their understanding.

Patents. The industrial patent literature for olefin metathesis by supported molybdena catalysts has also seen activity in recent years.^{82,84,91,93–97,104,108–112,114,163–188} The support of choice is γ -alumina,^{82,163–167,174–183,186–188} but mesoporous alumina^{84,98,100,184} and silica–alumina¹⁸⁵ supports have also been claimed. The alumina-based supports are sometimes treated with halides¹⁷⁸ and promoters that include B₂O₃,¹⁸⁴ CoO,¹⁸⁹ alkyl-Sn,¹⁹⁰ and alkyl-Pb.^{179,190} The patents are about equally divided between metathesis of small olefins (C₂H₄-C₄H₈)^{82,84,165,169–172,174,178,189,191–196} and higher olefins (C₅H₁₀–C₂₀H₄₀).^{94,95,100,108,115,175–177,181–183,186–188,197} The promotion mechanisms have not received attention in the catalysis literature.

 $MoO_x/(SiO_2-Al_2O_3)$. Mixed $Al_2O_3-SiO_2$ supports and zeolite supports have been claimed to improve the olefin metathesis activity for supported $MoO_r/(Al_2O_3-SiO_2)$ catalysts, but only limited studies have appeared for such catalysts.^{124–127,198–205} It was proposed that mixed SiO_2 – Al₂O₃ supports achieve an appropriate level of Brønsted acidity that is crucial for efficient catalytic performance during olefin metathesis with optimal activity achieved at moderate molybdena loadings^{126,127,198-201} and that excessive Brønsted acidity may be responsible for side reactions such as cracking and isomerization. $^{198-200}$ Surface $\rm Mo^{5+}$ sites, with $\rm MoO_5$ or MoO_6 coordination, were detected for supported $MoO_x/$ $(Al_2O_3-SiO_2)$ catalysts exposed to propylene metathesis with ex situ EPR after evacuation at 25 and 200 °C.²⁰¹ Although surface Mo⁵⁺ sites were detected after metathesis, no information is provided about other Mo oxidation states that may possibly be more important (e.g., Mo⁴⁺). The EPR measurements were complemented with ex situ L₃-XANES of fresh and used catalysts that indicated that the activated surface

 MoO_x sites are present as poorly formed oligomeric species containing some partially reduced Mo cations.²⁰¹ The ex situ spectroscopy characterization studies leave much to be desired because they were performed after the reaction was terminated and the samples were evacuated and exposed to ambient conditions containing molecular oxygen and moisture. The spectroscopic findings tend to be dominated by one Mo oxidation state (e.g., EPR is dominated by the Mo⁵⁺ cations and XANES is dominated by Mo⁶⁺ cations because a majority of the surface MoO_x sites are not expected to be reduced, especially after exposure to air). Only direct spectroscopic characterization during olefin metathesis will reveal the nature of the actual surface MoO_x cations on alumina present during the reaction.

The metathesis of 2-butene and ethylene on silica, silicaalumina, and alumina-supported MoO_x catalysts was recently reported by Hahn et al.²⁰² The optimal reactivity is observed around 40 wt % silica. On silica-alumina supports, Brønsted acidity increases with increasing silica and MoO_x loading, whereas an inverse trend is observed for Lewis acidity. This increasing Brønsted acidity is claimed to be responsible for improved metathesis activity of isolated MoO₄ and polymeric MoO₆ species that were detected from Raman and UV-vis measurements under ambient and dehydrated conditions, respectively. Combining results from ambient (hydrated) and dehydrated conditions is problematic because the molecular structures of surface MoO_x species are strongly dependent on moisture content.¹²³ When MoO_3 crystals are present, the catalytic activity cannot be improved by the Brønsted acidity. Interestingly, in their later paper, butene reactions (selfmetathesis of butenes and 2 to 1 isomerization) are reported to be faster on isolated species, where polymeric species catalyze metathesis of 2-butene and ethylene much faster.²⁰³ This is a bit surprising because increasing Brønsted acidity would be expected to contribute more to side reactions, according to earlier studies.^{198–200} Debecker et al. earlier claimed from self-metathesis of propylene with flame made $MoO_3/(SiO_2-Al_2O_3)$ that an inverse relationship exists between the number of Mo-O-Mo bonds and specific activity.¹²⁶ Therefore, Debecker et al. concluded that isolated MoO_x sites represent the most active sites, which is contrary to the findings of Hahn et al. that polymeric MoO_x sites are the most active sites for olefin metathesis. Debecker et al. also reported an one-pot aerosol synthesis method of MoO₃-SiO₂-Al₂O₃ from block copolymer (Brij58), AlCl₃, 12MoO₃H₃PO₄. xH_2O , or MoCl₅ with aqueous solution of tetraethyl orthosilicate and ethanol.^{204,205} With an average pore size of 1.8–2.0 nm, these catalysts were free of $Al_2(MoO_4)_3$ and MoO_3 crystals and displayed activity 2-3 times higher than those prepared by using ammonium heptamolybdate on traditional $SiO_2 - Al_2O_3$ supports.^{204,205} As indicated above, a more systematic variation of synthesis parameters is needed to fully understand the relationships between synthesis and catalyst performance for olefin metathesis by supported $MoO_3/(SiO_2 Al_2O_3$) catalysts.

Summary. The supported MoO_x olefin metathesis literature has attracted much attention because of the industrial importance of the SHOP olefin metathesis process.^{5,7,9} Although the molecular structures of the fully oxidized surface MoO_x sites have been determined for unpromoted supported molybdena catalysts, the nature of the surface MoOx sites and surface reaction intermediates during olefin metathesis still need to be resolved. DFT calculations and model studies with supported organometallic catalysts have been very informative, but *direct* observation of the surface MoO_x sites and surface reaction intermediates during olefin metathesis of both small and long-chain olefins still awaits further in situ and operando spectroscopy studies (e.g., XAS, ¹³C NMR, high field EPR, near atmospheric pressure XPS, Raman, and vibrational IR studies with isotopes). Such studies are expected to resolve many of the key fundamental issues that surround supported MoO_x catalysts.

■ SUPPORTED WO_X/SIO₂

The supported WO_x/SiO₂ catalyst has received much less attention in the olefin metathesis literature than either supported ReO_x and MoO_x catalysts, which is quite surprising because it is the major industrial olefin metathesis catalyst for the "Triolefin Process" that converts two propylene molecules to ethylene and 2-butene molecules.^{4,5} The reverse process is called "Olefin Conversion Technology" and is now licensed by ABB Lummus.^{5,11} One of the reasons for this relative inattention may be the need to employ higher temperatures $(\sim 350-450 \text{ °C})$ for activation of supported WO_x/SiO₂ catalysts. Use of such high temperatures precludes performing titration reactions because the surface reaction intermediates should have a very short lifetime and will react during the evacuation step. The supported WOx/SiO2 catalysts are typically prepared by impregnation of the aqueous $(NH_4)_6H_2W_{12}O_{40}$ precursor onto the SiO₂ support, followed by drying and calcination under oxidizing conditions at elevated temperatures (~500 °C).²⁰⁶

 \overline{WO}_x in Initial Oxidized Catalyst. The surface WO_x structures present for fully oxidized, dehydrated supported WO_x/SiO_2 catalysts have been established in the past few years from detailed in situ spectroscopic measurements (Raman^{133,140,206} and UV–vis^{133,140,206}). Both isolated surface dioxo, $(O=)_2W(-O)_2$, and mono-oxo $O=W(-O)_4$ species coexist on silica (depicted in Figure 4), with the dioxo species

Figure 4. Structures of WO_x species on SiO₂. Surface WO_x species coexist with WO_3 crystals at high coverage. (a) Dioxo WO_4 , (b) mono-oxo WO_5 , and (c) crystalline WO_3 nanoparticles.

being the dominant site. Above the maximum dispersion limit, crystalline WO₃ nanoparticles are also present, as shown in Figure 4. The oxidized supported WO_x/SiO₂ catalysts have structures that are analogous to the supported MoO_x/SiO₂ catalysts, which reflects the similar structural inorganic chemistry of both oxides.¹⁴⁰

Activated WO_x in Reducing Environments. The nature of the tungsten oxide structures present for supported WO₃/SiO₂ catalysts after catalyst activation and under olefin metathesis reaction conditions has not received any attention; no in situ or operando spectroscopy studies have been reported. Consequently, there is no agreement concerning knowledge about the nature of the tungsten oxide active site(s) responsible for olefin metathesis by supported WO_x/SiO₂ catalysts.²⁰⁷⁻²²⁷

Initiation and Reaction Mechanisms. There is no direct characterization study of the initiation and reaction mechanisms for olefin metathesis by WO_x/SiO₂ catalysts. Basrur et al. reported formation of traces of acetone and acetaldehyde during the induction period and claimed involvement of lattice oxygen in the mechanism.²²⁴ The pseudo-Wittig mechanism could be implied from their studies. Basrur et al. also claimed detection of nonstoichiometric oxidation states, such as WO₂₉ from ex situ ESR studies,²²⁴ but provided no information about the nature of the surface WO_x sites. A recent DFT study of olefin metathesis employed the crystalline WO₃(001) plane as the model for its catalytic active sites.²²⁵ However, the oxidation states of WO_x species were not mentioned. The crystalline $WO_3(001)$ plane is the most thermally stable plane and consists of polymeric WO5 and WO6 sites. This model, however, is not representative of the surface WO_x sites anchored on SiO₂ (isolated WO₄ and WO₅ sites and WO₃ nanoparticles) in the heterogeneous supported WO₃/SiO₂ catalysts. Consequently, DFT studies with more realistic catalyst models still need to be performed.

Number of Catalytic Active Sites. No attempt to count the number of sites involved in olefin metathesis by supported WO_x/SiO_2 catalysts has been reported. As indicated above, it is highly unlikely that the short-lived surface reaction intermediates could be titrated at the high activation temperatures of 300-500 °C. Direct spectroscopic measurements during activation and olefin metathesis should be able to address the issue of number of participating catalytic active sites.

Kinetics. Detailed kinetic studies of olefin metathesis by supported WO_v/SiO_2 have not appeared in the literature, but several researchers have attempted to relate the nature of the WO_x structures present on SiO₂ to the catalytic activity. Davazoglou et al. observed similar catalytic olefin metathesis performance for well-dispersed tungsten oxide at low loadings and on high loaded supported WO₃/SiO₂ catalysts. They concluded that the well dispersed tungsten oxide phase on SiO₂ is the catalytic active site because excess crystalline WO3 did not influence the overall catalyst performance.²²⁶ Wang et al. examined 1-butene isomerization and metathesis over two different supported WO₃/SiO₂ catalysts prepared with different silica supports.²²⁷ Raman analysis²²⁷ showed that the tungsten oxide was better dispersed on the lower surface area SiO₂ support, which is quite surprising because the opposite behavior would generally be expected. Whereas the lower surface area W-free SiO₂ support was not active for 1-butene isomerization, the higher surface area W-free SiO₂ support almost completely isomerized 1-butene, suggesting that the higher surface area support contained significant amounts of acidic surface impurities. The catalyst with higher surface area exhibited greater olefin metathesis activity, suggesting that the surface impurities were also acting as promoters. Unfortunately, no surface analysis was performed to determine the nature of the surface impurities present on the high surface area silica support.

For the cleaner supported WO_3/SiO_2 catalyst, the optimum metathesis performance was obtained at intermediate tungsten oxide loadings, where both dispersed surface WO_x and crystalline WO_3 nanoparticles coexist. This observation suggests that WO_3 nanoparticles may also be responsible for 1-butene metathesis. Hua et al. investigated 1-butene self-metathesis with supported $WO_x/MTS-9$ (a titano-silica molecular sieve) and found that the metathesis performance was comparable over a wide range of tungsten oxide loadings,

which suggests that both dispersed surface WO_x species and WO_3 nanoparticles contribute to the olefin metathesis reaction.^{215,216}

Chemechuen et al. investigated the influence of calcination temperature on the metathesis of ethylene and 2-butene to propylene over supported WO_x/SiO₂ catalysts. They concluded that the surface WO_x species were the catalytic active sites for olefin metathesis, even though both surface WO, species and crystalline WO₃ nanoparticles were always simultaneously present in their catalysts.²¹³ Most recently, the metathesis of 1-butene was studied over supported WO_x/SiO_2 catalysts with moderate dispersions of tungsten oxide, where both surface WO, species and WO₃ nanoparticles coexist and yield the optimum metathesis performance.²¹⁸ The contributions of the surface WO_x sites and WO_3 nanoparticles on silica to the olefin metathesis reaction appear to be unresolved. Studies with welldefined supported WO_r/SiO_2 catalysts are required to determine the catalytic contributions of the different WO_x sites present in supported WO_x/SiO₂ catalysts.

Surface Acidity. Selectivity is claimed to be related to surface acidity in the WO_x/SiO₂ system.²⁰⁷ Isomerization is claimed to occur through either alkoxide or allylic intermediates.²²⁸ Sources of alkali metal ions such as Na₂O and K₂O can be added to suppress the Brønsted acidity, which is claimed to be responsible for undesired isomerization products.²²⁸ However, large amounts of alkali ions may adversely affect conversion because they can also reduce the Lewis acidity, which is thought to be beneficial for metathesis activity.^{208,209,228} The role of surface acidity on olefin metathesis by supported WO_x/SiO₂ still awaits resolution with well-defined catalysts.

 $WO_x/(SiO_2-Al_2O_3)$. Supported WO_x/Al_2O_3 catalysts have received less attention in the literature than supported $\text{ReO}_x/$ Al₂O₃ and MoO₃/Al₂O₃ catalysts because of their lower olefin metathesis activity.⁹ This lower activity is related to its low ability to form a reduced active site, as seen in $\rm H_2\text{-}TPR$ spectra studies by Moulijn et al. 229 The olefin metathesis activity of supported WO_x/SiO_2 catalysts is reported to be higher than that of supported WO_x/Al_2O_3 ,^{218,230} but other researchers found the opposite effect.²³¹ Andreini and Mol claimed that supported WO_x/Al_2O_3 catalysts deactivate above 397 °C, whereas supported WO_v/SiO₂ catalysts are stable at such temperatures.²³⁰ For the supported $WO_x/(SiO_2-Al_2O_3)$ system, the optimal SiO_2 loading is reported to be 20-30 wt %.²¹⁸ Liu et al. claimed to only achieve moderate dispersion of surface WO_x species by impregnation of 3-aminopropyltriethoxylsilane on the Al₂O₃ support from Raman and UV-vis experiments under ambient conditions.²¹⁸ These researchers concluded that the most active species are polymeric surface WO_x species, not isolated WO_x sites or WO_3 nanocrystallites.²¹⁸ Huang et al. attributed the improved selfmetathesis activity of 1-butene to addition of 30% γ -Al₂O₃ to HY-zeolite $(Si/Al_2 = 10)$, which was enhanced relative to either γ -Al₂O₃ and HY-zeolite.²³² The improved performance was related to the Raman band for the surface WO_x species.²³² Debecker et al. reported W-Si-Al catalysts synthesized by an aerosol method outperformed traditional supported WO_x/ $(SiO_2 - Al_2O_3)$ by a factor of 1.5 at 250 °C, which was attributed to an improved well-balanced acidity, pore size, and better dispersion of WO_x species in the former samples.²³¹ As already mentioned earlier, simultaneous variation of the catalyst parameters prevents determining the origin of the catalyst structure-activity relationships for olefin metathesis, and more

systematic studies are required to really understand the fundamentals of supported $WO_x/(SiO_2-Al_2O_3)$ catalysts.

Supported Organometallic Catalysts. Several model silica-supported surface WO_x-organometallic catalysts have been reported. Verpoort et al. anchored aryloxy tungsten complexes on an Nb₂O₅/SiO₂ support and subsequently converted the aryloxy ligands to phenoxy ligands by refluxing with phenol in *n*-hexane.²¹³ The resulting catalysts were extremely active for 2-pentene metathesis and also much more active than their corresponding homogeneous analogues. The enhanced activity was assigned to the anchoring of the tungsten complexes to the acidic dispersed NbO_x species on the silica support. Characterization of the supported complexes, however, was not performed, and thus, a molecular level understanding of such novel supported organometallic metathesis catalysts is lacking. Le Roux et al. successfully synthesized and molecularly characterized a well-defined surface tungsten hydride organometallic catalyst on SiO₂ that was active for alkane metathesis.²²¹

Gauvin et al. synthesized and extensively characterized a welldefined silica supported surface dinuclear tungsten amido organometallic catalyst, which was not active for alkyne metathesis but became active after it was reacted with *tert*butyl alcohol to introduce *tert*-butoxide ligands.²²² The presence of alkylidene and metallacyclobutane surface reaction intermediates was detected with in situ solid state NMR by Schrock and Coperet et al. on a silica supported $[W(\equiv$ NAr)(=CH*t*-Bu)(2,5-Me₂NC₄H₂)₂] catalyst.¹³²

Mazoyer et al. synthesized and extensively characterized the first well-defined surface tungsten oxide oxo (W=O) alkyl organometallic catalysts on SiO₂, that were quite active for propylene metathesis.²²³ It was hypothesized that metathesis catalytic active sites require W=O oxo bonds.²²³ Recently, Schrock and Coperet et al. grafted (ArO)₂W(=O)(=CHt-Bu) (ArO = 2,6-mesitylphenoxide) on silica that had been partially dehydroxylated at 700 °C and was found to be one of the most active olefin metathesis catalysts to date.²³³ IR and NMR analysis revealed the formation of $[(\equiv SiO)W(\equiv O)(=CHt-Bu)(OAr)]$ (80%) and $[(\equiv SiO)W(\equiv O)(CH_2t-Bu)-(OAr)_2]$ (20%) surface complexes.²³³

Unlike the industrial supported WO₃/SiO₂ catalysts that require high temperatures and are inactive for metathesis of functionalized olefins, the silica-supported $[(\equiv SiO)W(\equiv O)(=CHtBu)(OAr)]$ catalyst is able to perform metathesis of olefins containing oxygenated groups such as oleic acid esters.²³³ The surface organometallic catalysts have an advantage in metathesis of functionalized olefins because these complexes better stabilize bulky compounds.^{80,233} The significantly enhanced activity of the silica-supported W organometallic complexes over industrial type supported WO₃/SiO₂ catalysts indicates that the structures and ease of activation of the catalytic active sites are different for these two catalyst systems.

Patents. Since 2000, the industrial patent literature for olefin metathesis by supported WO_x/SiO_2 catalysts has been receiving much attention, both worldwide and in the U.S.^{83,84,86,97,103,104,109,114,115,163,169,172,191,193,194,234–243} Although most of the patented metathesis processes are devoted to the use of ethylene and 2-butene feedstocks to make propylene, some of the processes also employ unconventional feeds, such as butenes (partially converted to ethylene),^{109,114,165,168,238} isobutyl alcohol (dehydrated to butene),^{172,191} and ethylene (partially dimerized to butene).^{82,115}

Some of the metathesis patents focus on the nature of the SiO_2 support (amorphous SiO₂, MCM-22, or MCM-48),^{106,197,235,236} and there is also emphasis on the purity of the SiO₂ support.¹⁰⁹ It has also been claimed that metathesis catalytic activity can be enhanced by initially acid-washing the silica support to reduce levels of impurities (e.g., Mg, Ca, Na, Al, and Fe, which must be maintained below several hundred parts per million), 234,235 and that the metathesis activity can be increased by the addition of promoters such as Nb₂O₅ (0.01-10%).¹⁷¹ Impregnation of the active tungsten oxide component on the silica support is always performed with the aqueous $(NH_4)_6H_2W_{12}O_{40}$ precursor, followed by drying at ~120 °C to remove the water and subsequent treatment at elevated temperatures.¹⁰⁴ The standard elevated temperature treatment involves calcination in air, but some patents also report heating in inert environments (N_2) or olefins.^{104,106,239,243} Patents on regeneration of coked catalysts describe regeneration with air and steam.^{168,193}

Summary. Although the molecular structures of the multiple WO_x sites present on silica for the initially oxidized supported WO_x/SiO_2 catalysts are known, there is no information about the nature of these WO_x sites during catalyst activation and olefin metathesis. The absence of direct characterization during catalyst activation and olefin metathesis prevents accessing fundamental information about the surface reaction intermediates and reaction mechanism. Relevant DFT calculations for olefin metathesis by supported WO_x/SiO_2 catalysts that relate the specific reactivity of each of the WO_x sites have to be performed. In comparison with the other supported metal oxide olefin metathesis catalysts, the supported WO_x/SiO_2 catalysts literature, which is surprising, given the industrial importance of this olefin metathesis catalytic system.

SUMMARY OF OLEFIN METATHESIS BY SUPPORTED METAL OXIDE CATALYSTS

The absence of direct observation measurements of the catalytic active sites and surface reaction intermediates during olefin metathesis is one of the primary reasons for the lack of scientific progress in this important field of heterogeneous catalysis. Systematic time-resolved in situ and operando molecular spectroscopy studies of supported rhenium, molybdenum, and tungsten oxide catalysts during catalyst activation and olefin metathesis should significantly advance our fundamental understanding of the nature of the catalytic active sites, surface reaction intermediates, reaction mechanisms, and structure-reactivity relationships of these important heterogeneous catalysts for olefin metathesis. A recent critical review of heterogeneous olefin metathesis by Coperet concluded that future research should be focused on (i) synthesis of well-defined supported catalysts, (ii) control of the surface structure of the oxide supports as a way to control the coordination sphere of the surface active species, (iii) development of advanced in situ and operando spectroscopic characterization methods to better understand the evolution of supported active sites and surface reaction intermediates under working conditions, (iv) correlation of the spectroscopic findings with kinetic studies (structure-activity relationships) and (v) elucidation of deactivation phenomena to prepare more robust catalysts and to provide novel methods of catalyst regeneration.⁷⁹ It appears from this literature review that the topic of olefin metathesis by heterogeneous supported metal oxide catalysts is still a relatively undeveloped research area and

is poised for significant progress in understanding of the fundamental molecular details of these important catalytic systems in the coming years.

AUTHOR INFORMATION

Corresponding Author

*E-mail: iew0@lehigh.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors gratefully acknowledge funding from the U.S. Department of Energy-Basic Energy Sciences (FG02-93ER14350) and the National Science Foundation (CHE 1301262) during the writing of this review.

REFERENCES

- (1) Anderson, A. W.; Merckling, N. G. Polymeric bicyclo-(2,2,1)-2heptene. U.S. Patent 2721189 (A), October 18, 1955.
- (2) Rouhi, A. M. Chem. Eng. News 2002, 80, 34-38.
- (3) Grubbs, R.; Tumas, W. Science (Washington, D.C.) 1989, 243, 907–915.
- (4) Banks, R. L.; Bailey, G. C. Ind. Eng. Chem. Prod. Res. Dev. 1964, 3, 170–173.
- (5) Mol, J. C. J. Mol. Catal. A.: Chem. 2004, 213, 39-45.
- (6) British Petroleum Corporation. Disproportionation catalyst. Great Britain Patent GB1054864 (A), September 8, 1964.
- (7) Keim, W. Angew. Chem., Int. Ed. 2013, 52, 12492-12496.
- (8) Calderon, N.; Chen, H. Y.; Scott, K. W. Tetrahedron Lett. 1967, 34, 3327–3329.
- (9) Mol, J. C.; van Leeuwen, P. W. N. M. Metathesis of Alkenes. Handbook of Heterogeneous Catalysis; Wiley-VCH: Weinheim, 2008; Vol. 14, pp 3240-3256
- (10) Rouhi, A. M. Chem. Eng. News 2002, 80, 29-33.
- (11) Metathesis. Kirk Othmer Encyclopedia of Chemical Technology, 5th ed.; Wiley & Sons: New York, 2005, Vol. 20, pp 1–29.
- (12) The Nobel Prize in Chemistry. http://www.nobelprize.org/ nobel prizes/chemistry/laureates/2005/; Accessed March 20, 2014.
- (13) Hérisson, J.-L.; Chauvin, Y. Makromol. Chem. **1971**, 141, 161– 176.
- (14) Coperet, C.; Chabanas, M.; Saint Arroman, R. P.; Basset, J. M. Agnew. Chem. Int. Ed. 2003, 42, 156–181.
- (15) Handzlik, J.; Sautet, P. J. Catal. 2008, 256, 1-14.
- (16) Handzlik, J. J. Phys. Chem. B 2005, 109, 20794-20804.
- (17) Handzlik, J. Surf. Sci. 2007, 601 (9), 2054–2065.
- (18) Handzlik, J.; Ogonowski, J.; Tokarz-Sobieraj, R. Catal. Today 2005, 101, 163–173.
- (19) Solans-Monfort, X.; Filhol, J.; Coperet, C.; Eisenstein, O. New J. Chem. 2006, 30, 842–850.
- (20) Wachs, I. E. Catal. Today 1996, 27, 437-455.
- (21) Wachs, I. E.; Keturakis, C. J. Monolayer Systems. In *Comprehensive Inorganic Chemistry II*; Schlogl, R., Ed.; Elsevier Publishing: Amsterdam, 2013; pp 131–151.
- (22) Amakawa, K.; Wrabetz, S.; Kroehnert, J.; Tzolova-Mueller, G.; Schloegl, R.; Trunschke, A. J. Am. Chem. Soc. **2012**, 134, 11462–11473.
- (23) Salameh, A.; Coperet, C.; Basset, J.; Bohm, V. P. W.; Roper, M. Adv. Synth. Catal. 2007, 349, 238–242.
- (24) McCoy, J. R.; Farona, M. F. J. Mol. Catal. 1991, 66, 51-58.
- (25) Chauvin, Y.; Commereuc, D. J. Chem. Soc., Chem. Comm. 1992, 6, 462–464.
- (26) Olsthoorn, A. A.; Boelhouwer, C. J. Catal. 1976, 44, 197-206.
- (27) Nakamura, R.; Abe, F.; Echigoya, E. Chem. Lett. 1981, 51-54.
- (28) Wang, L.; Hall, K. E. J. Catal. 1983, 82, 177-184.
- (29) Vuurman, M. A.; Stufkens, D. J.; Oskam, A.; Wachs, I. E. J. Mol. Catal. 1992, 76, 263–285.

- (31) Mol, J. C. Catal. Today 1999, 51, 289-299.
- (32) Turek, A. M.; Wachs, I. E.; DeCanio, E. J. Phys. Chem. 1992, 96, 5000-5007.
- (33) Hardcastle, F. D.; Wachs, I. E.; Horsley, J. A.; Via, G. H. J. Mol. Catal. 1988, 46, 15–36.
- (34) Bare, S. R.; Kelly, S. D.; Vila, F. D.; Boldingh, E.; Karapetrova, E.; Kas, J.; Mickelson, G. E.; Modica, F. S.; Yang, N.; Rehr, J. *J. Phys. Chem.* C **2011**, *115*, 5740–5755.
- (35) Vicente, B. C.; Nelson, R. C.; Moses, A. W.; Chattopadhyay, S.; Scott, S. L. J. Phys. Chem. C 2011, 115, 9012–9024.
- (36) Okal, J.; Kepinski, L. In *Focus on Catalysis Research*; Bevy, L. P., Ed.; Nova Science Publishers, Inc.: Hauppauge, N. Y., 2006; p 21.
- (37) Shpiro, E. S.; Avaev, V. I.; Antoshin, G. V.; Ryashentseva, M. A.; Minachev, K. M. J. Catal. **1978**, 55, 402–406.
- (38) Yide, X.; Xinguang, W.; Yingzhen, S.; Yihua, Z.; Xiexian, G. J. Mol. Catal. **1986**, 36, 79–89.
- (39) Balcar, H.; Zilkova, N.; Bastl, Z.; Dedecek, J.; Hamtil, R.; Brabec, L.; Zukal, A.; Cejka, J. *Stud. Surf. Sci. Catal.* **2007**, *170*, 1145–1152.
- (40) Fung, A. S.; Tooley, P. A.; Kelley, M. J.; Koningsberger, D. C.; Gates, B. C. J. Phys. Chem. 1991, 95, 225–234.
- (41) Ronning, M.; Nicholson, D. G.; Holmen, A. Catal. Lett. 2001, 72, 141–146.
- (42) Daniell, W.; Weingard, T.; Knozinger, H. J. Mol. Catal. A: Chem. 2003, 204–205, 519–526.
- (43) Duquette, L. G.; Cielinsky, R. C.; Jung, C. W.; Garrou, P. E. J. Catal. 1984, 90, 362-365.
- (44) Xu, Y.; Huang, J.; Lin, Z.; Guo, X. J. Mol. Catal. 1991, 65, 275–285.
- (45) Xiaoding, X.; Boelhouwer, C.; Vonk, D.; Benecke, J. I.; Mol, J. C. J. Mol. Catal. **1986**, 36, 47–66.
- (46) Stoyanova, M.; Rodemerck, U.; Bentrup, U.; Dingerdissen, U.; Linke, D.; Mayer, R.-W.; Lansink Rotgerink, H. G. J.; Tacke, T. *Appl. Catal., A* **2008**, *340*, 242–249.
- (47) Tarasov, A. L.; Shelimov, B. N.; Kazansky, V. B.; Mol, J. C. J. Mol. Catal. A: Chem. **1997**, 115, 219–228.
- (48) Olsthoorn, A. A.; Boelhouwer, C. J. Catal. 1976, 44, 207–216.
 (49) Kapteijn, F.; Bredt, L. H. G.; Homburg, E.; Mol, J. C. Ind. Eng.
- Chem. Prod. Res. Dev. 1981, 20, 457-466.
- (50) Ellison, A.; Coverdale, A. K.; Dearing, P. F. Appl. Catal. 1983, 8, 109–121.
- (51) Ellison, A.; Coverdale, A. K.; Dearing, P. F. J. Mol. Catal. 1985, 28, 141–167.
- (52) Xiaoding, X.; Mol, J. C. J. Chem. Soc., Chem. Commun. 1985, 10, 631–633.
- (53) Xiaoding, X.; Mol, J. C.; Boelhouwer, C. J. Chem. Soc. 1986, 82, 2707–2718.
- (54) Amigues, P.; Chauvin, Y.; Commereuc, D.; Hong, C. T.; Lai, C. C.; Liu, Y. H. J. Mol. Catal. **1991**, 65, 39–50.
- (55) Murrell, L. L.; Dispenziere, N. C. *Catal. Lett.* **1989**, *2*, 329–333. (56) Crepeau, G.; Montouillout, V.; Vimont, A.; Mariey, L.; Cseri, T.;
- Mauge, F. J. Phys. Chem. B 2006, 110, 15172-15185.
- (57) Schekler-Nahama, F.; Clause, O.; Commereuc, D.; Saussey, J. *Appl. Catal, A* **1998**, *167*, 237–245.
- (58) Bek, D.; Balcar, H.; Zilkov, N.; Zukal, A.; Horacek, M.; Cejka, J. ACS Catal. 2011, 1, 709–718.
- (59) Hamtil, R.; Zilkova, N.; Balcar, H.; Cejka, J. Appl. Catal., A 2006, 302, 193–200.
- (60) Balcar, H.; Hamtil, R.; Zilkova, N.; Cejka, J. Catal. Lett. 2004, 97, 25–29.
- (61) Balcar, H.; Hamtil, R.; Zilkova, N.; Zhang, Z.; Pinnavaia, T.; Cejka, J. *Appl. Catal., A* **2007**, 320, 56–63.
- (62) Oikawa, T.; Ookoshi, T.; Tanaka, T.; Yamamoto, T.; Onaka, M. *Micro. Meso. Mater.* **2004**, *74*, 93–103.
- (63) Balcar, H.; Zilkova, N.; Zukal, A.; Cejka, J. Stud. Surf. Sci. Catal. 2008, 174 A, 61–66.
- (64) Oikawa, T.; Masui, Y.; Tanaka, T.; Chujo, Y.; Onaka, M. J. Organomet. Chem. 2007, 692, 554–561.

(65) Bakala, P. C.; Briot, E.; Millot, Y.; Piquemal, J.; Brégeault, J. J. Catal. 2008, 258, 61-70.

- (66) Sheu, F.; Hong, C.; Hwang, W.; Shih, C.; Wu, J.; Yeh, C. Catal. Lett. **1992**, *14*, 297–304.
- (67) Williams, K. P. J.; Harrison, K. J. Chem. Soc. Faraday Trans. 1990, 86, 1603–1610.

(68) Sibeijn, M.; Spronk, R.; Van Neen, J. A. R.; Mol, J. C. Catal. Lett. **1991**, *8*, 201–208.

(69) Xiaoding, X.; Boelhouwer, C.; Benecke, J. I.; Vonk, D.; Mol, J. C. J. Chem. Soc. Faraday Trans. **1986**, 82, 1945–1953.

(70) Ivin, K. C.; Mol, J. C. Olefin Metathesis and Metathesis Polymerization; Academic Press: London, 1997.

(71) Bouchmella, K.; Mutin, P. H.; Stoyanova, M.; Poleunis, C.; Eloy, P.; Rodemerch, U.; Gaigneaux, E. M.; Debecker, D. P. J. Catal. **2013**, 301, 233–241.

(72) Herrmann, W. A.; Wagner, W.; Flessner, U. N.; Vokhardt, U.; Komber, H. Angew. Chem., Int. Ed. **1991**, 30, 1636–1638.

(73) Salameh, A.; Joubert, J.; Baudouin, A.; Lukens, W.; Delbecq, F.; Sautet, P.; Basset, J.; Coperet, C. Angew. Chem., Int. Ed. 2007, 46, 3870–3873.

(74) Salameh, A.; Baudouin, A.; Soulivong, D.; Boehm, V.; Roeper, M.; Basset, J.; Copéret, C. *J. Catal.* **2008**, *253*, 180–190.

(75) Tovar, T.; Stewart, S. M.; Scott, S. L. *Top. Catal.* **2012**, *55*, 180–190.

(76) Moses, A. W.; Ramsahye, N. A.; Raab, C.; Leifeste, H. D.; Chattopadhyay, S.; Chmelka, B. F.; Eckert, J.; Scott, S. L.

Organometallics 2006, 25, 2157–2165.

(77) Salameh, A.; Baudouin, A.; Basset, J.; Coperet, C. Angew. Chem., Int. Ed. 2008, 47, 2117–2120.

(78) Coperet, C. Beilstein J. Org. Chem. 2011, 7, 13-21.

(79) Coperet, C. Dalton Trans. 2007, 47, 5498-5504.

(80) Chabanas, M.; Baudouin, A.; Coperet, C.; Basset, J. J. Am. Chem. Soc. 2001, 123, 2062–2063.

(81) Scott, S. L.; Basset, J. J. Am. Chem. Soc. 1994, 116, 12069–12070.

(82) Coleman, S. T.; Sawyer, G. A.; Bridges, R. S. Production of 1-Butene and Propylene From Ethylene. U.S. Patent 20120095275 A1, April 19, 2012.

(83) Chahen, L.; Berthod, M.; Kelsen, V.; Chauvin, Y.; Olivier-Bourbigou, H.; Vallee, C. Novel complexes and method for synthesis of group 6 organometallics grafted on anions, and use thereof in an olefin metathesis method. U.S. Patent 20110098497 A1, April 28, 2011.

(84) Takai, T.; Ikenaga, H.; Kotani, M.; Miyazoe, S. Olefin manufacturing method. PCT Int. WO 2010024319 A1, March 4, 2010.

(85) Szesni, N.; Sturm, S.; Fischer, R. Improved process for preparation of methyltrioxorhenium by chlorination of rhenium oxides and methylation by methylzinc acetate. DE 102008062687 A1, July 1, 2010.

(86) Ramachandran, B.; Choi, S.; Gartside, R. J.; Kleindienst, S.; Ruettinger, W.; Alerasool, S. Olefin isomerization and metathesis catalyst for manufacture of propylene. U.S. Patent 20100056839 A1, March 4, 2010.

(87) Szesni, N.; Sturm, S.; Fischer, R.; Hermann, W. Improved process for preparing methyltrioxorhenium and organorhenium(vii) oxides. PCT Int. WO 2009036775 A1, March 26, 2009.

(88) Gennaro, A.; Guerrini, R.; Panella, F.; Querci, C.; Russo, M. Process for the preparation of supported rhenium catalyst and its use in the metathesis reaction of olefins. IT 1347799 B1, October 2, 2008.

(89) Sigl, M.; Schneider, D. Assignee: BASF SE, Germany. Carrier catalyst for metathesis. PCT Int. WO 2008077835 A2, July 3, 2008.

(90) Bespalova, N. B.; Masloboishchikova, O. V.; Kozlova, G. A. Rhenium oxide catalyst for production of propylene by olefin metathesis. RU 2292951 C1, February 10, 2007.

(91) Takai, T.; Kubota, T. Method for producing olefins by metathesis reaction of olefins under hydrogen using catalysts. PCT Int. WO 2006093058 A1, September 8, 2006.

(92) Basset, J. M.; Thivolle Cazat, J.; Taoufik, M.; Le Roux, E.; Coperet, C. Process for the metathesis of alkenes using a catalyst comprising alumina which has been surface grafted with tungsten hydride moieties. FR 2872509 A1, January 6, 2006.

(93) Herrmann, W. A.; Kuehn, F. E.; Fischer, R. A method for efficient production of methyltrioxorhenium (VII) (MTO) and organorhenium (VII) oxide. DE 102004062246 A1, March 2, 2006.

(94) Brown, D. S.; Ginestra, J. M. Metathesis catalyst and process. U.S. Patent 20060116542 A1, June 1, 2006.

(95) Schubert, M.; Stephan, J.; Poplow, F.; Heidemann, T.; Diehlmann, U.; Maltry, M. Metathesis method for purifying starting products. PCT Int. WO 2006089957 A1, August 31, 2006.

(96) Sigl, M.; Schubert, M.; Stephan, J.; Poplow, F. Method for producing propene from 2-butene and isobutene-rich feeding flows. PCT Int. WO 2006089956 A2, August 31, 2006.

(97) Gartside, R. J.; Greene, M. I. Catalyst and process for the metathesis of ethylene and butenes in the manufacture of propylene. U.S. Patent 20050124839 A1, June 9, 2005.

(98) Schubert, M.; Stephan, J.; Boehm, V.; Brodhagen, A.; Poplow, F.; Weichert, C.; Borchert, H. Supported catalyst with a defined pore distribution in the mesopore range. PCT Int. WO 2005082532 A1, September 9, 2005.

(99) Schubert, M.; Stephan, J.; Boehm, V.; Brodhagen, A.; Poplow, F. Metathesis catalysts supported on delta- or theta-modified alumina for nonaromatic unsaturated compound manufacture. PCT Int. WO 2005082526 A2, September 9, 2005.

(100) Onaka, A.; Oikawa, T. MXy-meso Al_2O_3 catalyst support and metathesis catalyst. JP 2005152888 A, June 16, 2005.

(101) Schubert, M.; Hesse, M.; Stephan, J.; Boehm, V.; Brodhagen, A.; Poplow, F.; Diehlmann, U.; Hellmann, M.; Loewenmuth, G. Porous, supported metathesis rhenium catalyst manufactured using porous building materials. DE 102004009804 A1, September 15, 2005. (102) Querci, C.; Bosetti, A.; Guerrini, R.; Panella, F.; Russo, M. Rhenium catalyst supported on modified alumina and use thereof in the metathesis reaction of olefins. PCT Int. Appl. WO 2005105286 A2, November 10, 2005.

(103) Basset, J. M.; Coperet, C.; Soulivong, D.; Taoufik, M.; Thivolle, C. J. Metal compound fixed on a support, preparation process, and use of the compound in hydrocarbon metathesis reactions. FR 2852866 A1, October 1, 2004.

(104) Schubert, M.; Hesse, M.; Stephan, J.; Boehm, V.; Brodhagen, A.; Poplow, F.; Sinner-Lang, M.; Diehlmann, U.; Cox, G.; Pfeifer, J. Preparation of activated metathesis catalysts. EP 1473083 A1, November 3, 2004.

(105) Turchetta, S.; Massardo, P.; Tuozzi, A. Improved process for preparation of trioxomethylrhenium by methylation of dirhenium heptaoxide by tetramethylstannane in the presence of chlorotrimethylsilane. PCT Int. WO 2004076469 A1, September 10, 2004.

(106) Flego, C.; Pollesel, P.; Ricci, M.; Romano, U. Process for preparation of 2,3-dimethylbutane. IT 1324054 B1, October 28, 2004.

(107) Stephan, J.; Schubert, M.; Weichert, C.; Ruppel, W.; Resch, P.; Zimdahl, S.; Mrzena, F.; Molitor, A.; Berg, S.; Fohrmann, M. Regeneration of supported rhenium oxide-doped olefin metathesis catalysts. DE 10309070 A1, September 16, 2004.

(108) Euzen, P.; Guibert, S.; Kruger-Tissot, V.; Vidouta, G. Catalyst compound for the metathesis of olefins. U.S. Patent 20030023125 A1, January 30, 2003.

(109) Gartside, R. J.; Greene, M. I.; Jones, Q. J. Metathesis process for producing propylene and hexene from C4 olefin streams. U.S. Patent 20030176754 A1, September 18, 2003.

(110) Twu, F.; Christensen, S. A.; Hensey, S.; Rost, W. R. U.S. Patent 20030224945 A1, December 4, 2003.

(111) Querci, C.; Panella, F.; Guerrini, R.; Russo, M. EP 1350779 A1, October 8, 2003.

(112) Matkovskii, P. E.; Startseva, G. P.; Aldoshin, S. M.; Mihailovic, D.; Stankovic, V. Process for production of olefinic oligomers by cationic oligomerization of isomeric decenes with nickel–aluminum catalyst systems. RU 2199516 C2, February 27, 2003.

(113) Woehrle, I.; Reckziegel, A.; Esser, P.; Stuermann, M. Synthesis of cycloalkadiene by metathesis of cycloalkenes using Re_2O_7 catalyst supported over γ -Al₂O₃. EP 1287887 A1. March 5, 2003.

(114) Gartside, R. J.; Greene, M. I.; Khonsari, A. M.; Murrell, L. L. Catalyst consisting of a transition metal supported on a high purity silica for the metathesis of olefins. PCT Int. WO 2002100535 A1, December 19, 2002.

(115) Guerin, F.; Guo, S. X. Production of low molecular weight hydrogenated nitrile rubber involving metathesis of nitrile rubber and an olefin. PCT Int. WO 2002100905 A1, December 19, 2002.

(116) Basset, J.; Chabanas, M.; Coperet, C. Supported catalysts for the metathesis of olefins. PCT Int. WO 2002022262 A2, March 21, 2002.

(117) Schwab, P.; Breitscheidel, B.; Schulz, R.; Schulz, M.; Mueller, U. Catalysts based on rhenium heptoxide on a support and its manufacture for metathesis of olefins. DE 19837203 A1, February 24, 2000.

(118) Metathesis catalyst based on rhenium and cesium, its preparation and its use in conversion of a C4 olefin fraction. DE 19947352 A1, April 6, 2000.

(119) Commercuc, D.; Mikitenko, P. Process for the metathesis of olefins in the presence of a stabilizing agent for the catalyst. EP 1024123 A1, August 2, 2000.

(120) Amigues, P.; Chauvin, Y.; Commereuc, D.; Hong, C. T.; Lai, C. C.; Liu, Y. H. J. Mol. Catal. **1991**, 65, 39–50.

(121) Bakala, P. C.; Briot, E.; Millot, Y.; Piquemal, J.; Brégeault, J. J. Catal. 2008, 258, 61-70.

(122) Chauvin, Y.; Commereuc, D.; Saussine, L. Reprocessing of used rhenium catalyst. EP 568407 A1, November 03, 1993.

(123) Tian, H.; Roberts, C. A.; Wachs, I. E. J. Phys. Chem. C 2010, 114, 14110-14120.

(124) Debecker, D. P.; Stoyanovab, M.; Rodemerckb, U.; Gaigneaux, E. M. J. Mol. Catal. A: Chem. **2011**, 340, 65–76.

(125) Debecker, D. P.; Bouchmella, K.; Poleunis, C.; Eloy, P.; Bertrand, P.; Gaigneaux, E. M.; Mutin, P. M. *Chem. Mater.* **2009**, *21*, 2817–2824.

(126) Debecker, D. P.; Schimmoeller, B.; Stoyanova, M.; Poleunis, C.; Bertrand, P.; Rodemerck, U.; Gaigneaux, E. M. J. Catal. 2011, 277, 154–163.

(127) Debecker, D. P.; Stoyanova, M.; Rodemerck, U.; Eloy, P.; Léonard, A.; Su, B.; Gaigneaux, E. M. J. Phys. Chem. C 2010, 114 (43), 18664–18673

(128) Banares, M.; Hu, H.; Wachs, I. E. J. Catal. 1994, 150 (2), 407–420.

(129) Williams, C. C.; Ekerdt, J. G.; Jehng, J. M.; Hardcastle, F. D.; Turek, A. M.; Wachs, I. E. J. Phys. Chem. 1991, 95 (22), 8781-8791.

(130) Imamoglu, Y.; Zumeroglu-Karan, B.; Amass, A. J. Olefin Metathesis and Polymerization Catalysts: Synthesis, Mechanism and Utilization; Kluwer Academic Publishers: Boston, Dordrecht, 1989; Series C: Mathematical and Physical Sciences; Vol. 326.

(131) Blanc, F.; Rendon, N.; Berthoud, R.; Basset, J.; Coperet, C.; Tonzetich, Z. J.; Schrock, R. R. Dalton Trans. 2008, 3156–3158.

(132) Blanc, F.; Berthoud, R.; Coperet, C.; Lesage, A.; Emsley, L.; Singh, R.; Kreickmann, T.; Schrock, R. R. *Proc. Natl. Acad. Sci. U.S.A.* **2008**, *105*, 12123–12127.

(133) Lee, E. L.; Wachs, I. E. J. Phys. Chem. C 2007, 111, 14410-14425.

(134) Chempath, S.; Zhang, Y.; Bell, A. T. J. Phys. Chem. C 2007, 111, 1291–1298.

(135) Handzlik, J.; Ogonowski, J. J. Phys. Chem. C 2012, 116, 5571–5584.

(136) Amakawa, K.; Sun, L.; Guo, C.; Hävecker, M.; Kube, P.; Wachs, I. E.; Lwin, S.; Frenkel, A. I.; Patlolla, A.; Hermann, K.; Schlögl, R.; Trunschke, A. Angew. Chem., Int. Ed. **2013**, *52*, 13553–13557.

(137) Radhakrishnan, R.; Reed, C.; Oyama, S. T.; Seman, M.; Kondo, J. N.; Domen, K.; Ohminami, Y.; Asakura, K. *J. Phys. Chem. B* **2001**, *105*, 8519–8530.

(138) Ohler, N.; Bell, A. T. J. Phys. Chem. B 2006, 110, 2700–2709.
(139) Thielemann, J. P.; Ressler, T.; Walter, A.; Tzolova-Müller, A.; Hess, C. Appl. Catal., A 2011, 399, 28–34.

(140) Lee, E. L.; Wachs, I. E. J. Phys. Chem.C 2008, 112, 6487-6498.

(141) Zhang, B.; Liu, N.; Lin, Q.; Jin, D. J. Mol. Catal. 1991, 65, 15–28.

(142) Kazansky, V. B.; Shelimov, N. B.; Vikulov, K. A. Stud. Surf. Sci. Catal. 1993, 75, 515–527.

(143) Vikulov, K. A.; Shelimov, B. N.; Kazansky, V. B.; Martra, G.; Marchese, L.; Coluccia, S. Spec. Publ.—R. Soc. Chem. **1992**, 114, 87– 96.

(144) Vikulov, K. A.; Elev, I. V.; Shelimov, B. N.; Kazansky, V. B. Catal. Lett. **1989**, 2, 121–123.

(145) Vikulov, K. A.; Shelimov, B. N.; Kazansky, V. B.; Mol, J. C. J. Mol. Catal. **1994**, 90, 61–67.

(146) Bykov, V. I.; Khmarin, E. M.; Belyaev, B. A.; Butenko, T. A.; Finkel'shtein, E. S. *Kin. Catal.* **2008**, *49*, 11–17.

(147) Bykov, V. I.; Belyaev, B. A.; Butenko, T. A.; Finkel'shtein, E. S. *Kin. Catal.* **2012**, *53*, 353–356.

(148) Hu, H.; Wachs, I. E.; Bare, S. R. J. Phys. Chem. 1995, 99, 10897-10910.

(149) Chen, K.; Xie, S.; Bell, A. T.; Iglesia, E. J. Catal. 2001, 198, 232-242.

(150) Handzlik, J.; Sautet, P. J. Phys. Chem. C 2008, 112, 14456-14463.

(151) Handzlik, J.; Sautet, P. J. Phys. Chem. C 2010, 114, 19406-19414.

(152) Masitkhin, V. M.; Nosov, A. V.; Zamaraev, K. I.; Wachs, I. E. J. Phys. Chem. C 1994, 98, 13621–13624.

(153) Grunert, W.; Stakheev, A. Y.; Morke, W.; Feldhaus, R.; Anders, K.; Shpiro, E. S.; Minachev, K. M. *J. Catal.* **1992**, *135*, 269–286.

(154) Grunert, W.; Stakheev, A. Y.; Feldhaus, R.; Anders, K.; Shpiro, E. S.; Minachev, K. M. J. Catal. **1992**, *135*, 287–299.

(155) Kilmov, O. V.; Aleksev, O. S.; Startsev, A. N. React. Kinet. Catal. Lett. 1995, 56, 143–150.

(156) Aguado, J.; Escola, J. M.; Castro, M. C. Stud. Surf. Sci. Catal. 2005, 156, 835-842.

(157) Olsthoorn, A. A.; Moulijn, J. A. J. Mol. Catal. 1980, 8, 147–160.

(158) Grubbs, R. H.; Swetnick, S. J. J. Mol. Catal. 1980, 8, 25-36.

(159) Guan, J.; Yang, G.; Zhou, D.; Zhang, W.; Liu, X.; Han, X.; Bao,

X. J. Mol. Catal: A. Chem. 2009, 300, 41-47.

(160) Brenner, A.; Burwell, R. L. J. Catal. 1978, 52, 364-374.

(161) Hardee, J. R.; Hightower, J. W. J. Catal. 1983, 83, 182-191.

(162) Handzlik, J.; Ogonowski, J. Catal. Lett. 2003, 88, 119-122.

(163) Fuerstner, A.; Heppekausen, J. Molybdenum and tungsten metal complexes and use thereof as precatalysts for olefin metathesis. PCT Int. WO 2012116695 A1, September 7, 2012.

(164) Taoufik, M.; Mazoyer, E.; Nicholas, C. P.; Basset, J. Olefin metathesis process and catalyst containing tungsten fluorine bonds for olefin. PCT Int. WO 2012092014 A2, July 5, 2012.

(165) Van Hal, J. W.; Stevenson, S. A.; Allman, J.; Sullivan, D. L.; Conant, T. A process for producing propylene and aromatics from butenes by metathesis and aromatization. PCT Int. WO 2011136983 A1, November 3, 2011.

(166) Nicholas, C. P.; Mazoyer, E.; Taoufik, M.; Basset, J.; Barger, P. T.; Rekoske, J. E. Conversion of butylene to propylene under olefin metathesis conditions. U.S. Patent 20110245570 A1, October 6, 2011.
(167) Miyazoe, S.; Ikenaga, H.; Kotani, M. Process for producing

olefin, PCT Int. WO 2010113993 A1, October 7, 2010. (168) Shum, P.-S. Catalyst regeneration with coke removal from pores. U.S. Patent 20100167911 A1, July 1, 2010.

(169) Halsey, R. B. Metathesis process using a moving phase reactor. U.S. Patent 20090281364 A1, November 12, 2009.

(170) Halsey, R. B.; Coleman, S. T. Olefin metathesis process using a fluidized bed reactor. U.S. Patent 20090203950 A1, August 13, 2009. (171) Li, W.; Wang, Y.; Xie, Z.; Chen, Q.; Yang, W. Catalysts for metathesis of butylene for preparation of propylene. CN 1618515 A, May 25, 2005.

(172) Bridges, R. S. Multi-step process for propylene and gasoline manufacture from tert-butanol and ethylene. U.S. Patent 20050250969 A1, November 10, 2005.

(173) Botha, J. M.; Spamer, A.; Mbatha, M.; Mthokozi, J.; Nkosi, B. S.; Reynhardt, J. P. K.; Jacobus, K. S.; Schwikkard, G. W. High-temperature metathesis process for the conversion of C5–15 alkenes into C9–18 alkenes. PCT Int. WO 2001002324 A1, January 11, 2001.

(174) Conant, T.; Stevenson, S. A. Mixed-phase operation of butenes metathesis process for maximizing propylene production using metathesis catalysts, U.S. Patent 20130150643 A1. June 13, 2013.

(175) Xuan, D.; Wang, Y.; Liu, S. Method for preparing 2,3-dimethyl-2-butene by metathesis of isobutylene. CN 102464552. May 23, 2012.

(176) Kinkead, S. A. Olefin metathesis for kerogen upgrading. U.S. Patent 20090133935 A. May 28, 2009.

(177) Basset, J.; Merle, N.; Stoffelbach, F.; Taoufik, M.; Thivolle-Cazat, J. Solid metal compound, preparations and uses thereof. PCT Int. WO 2009044107. April 15, 2010.

(178) Bridges, R. S.; Coleman, S. T. Integrated cracking and metathesis process for the manufacture of propylene from ethane. U.S. Patent 20070112236. May 17, 2007.

(179) Kruger, T. V.; Guibert, S.; Commereuc, D. Method for improving the regeneration of a metathesis catalyst. U.S. Patent 20030008766. January 9, 2003.

(180) Maas, H.; Wiebelhaus, D.; Stephan, J.; Paciello, R. Method for producing C6–20 linear α -olefins using transalkylation with isomerization and metathesis. DE 10103309. August 1, 2002.

(181) Mukerjee, S. L.; Kyllingstad, V. L. Ring-opening metathesis polymerization (ROMP) of cycloolefins with molybdenum catalysts with outstanding reactivity. U.S. Patent 20020111446. August 15, 2002.

(182) Lutz, E. F. Metathesis process and catalysts for the preparation of α -olefins from internal olefins and ethylene. U.S. Patent 5672802. September 30, 1997.

(183) Endo, Z.; Yamada, T. Metathesis polymerization catalyst solution and system for preparing cross-linked polymers. EP0815155 B1. August 7, 2002.

(184) Inagaki, S.; Fukushima, Y.; Ichikawa, M.; Oonishi, R. Olefin metathesis catalysts. JP 08215565. August 27, 1996.

(185) Noweck, K.; Hoffmann, A. Aluminosilicate-supported rhenium oxide catalysts and their use in olefin metathesis. U.S. Patent 5883272 A. March 16, 2009.

(186) Kelly, J. Preparation of C4-alkene streams by olefin metathesis, EP 691318 A1. January 10, 1996.

(187) Nicolaides, C. P. Production of C4–6 olefins for manufacture of gasoline octane boosters using a metathesis catalyst. ZA 9207693. April 15, 1993.

(188) Quann, R. J. Alpha-olefins from light olefins. U.S. Patent 4665245 A. May 12, 1987.

(189) Motz, K. L.; Poe, R. L.; Washecheck, P. H.; Yates, J. E. Olefins. EP 139774. May 8, 1985.

(190) Tanaka, K. Catalyst for metathesis reaction. JP 61125438. June 13, 1986.

(191) Vermeiren, W.; Adam, C.; Minoux, D..Production of propylene via simultaneous dehydration and skeletal isomerization of isobutanol on acid catalysts followed by metathesis. PCT Int. WO 2011113836 A1, September 22, 2011.

(192) Bespalova, N. B.; Masloboyshchikova, O. V.; Kozlova, G. A. High selectivity dimerization and metathesis catalyst for producing propylene from ethylene in petrochemical industry. RU 2370314 C1. October 20, 2009.

(193) Ikenaga, H. Process for reactivation of metathesis catalysts and process for production of olefins comprising the reactivation. PCT Int. WO 2009013964 A1, January 29, 2009.

(194) Liu, S.; Wang, Y.; Xu, W.; Xu, Z.; Yang, W. Olefin metathesis catalyst for preparing propylene. CN 1915510 A. February 21, 2007.

(195) Kukes, S. G.; Banks, R. L. Olefin metathesis and catalyst. U.S. Patent 4517401. May 14, 1985.

(196) Kukes, S. G.; Banks, R. L. Metathesis process and catalyst. U.S. 4465890 A. August 14, 1984.

(197) Tupy, M. J.; Amore, F.; Kaido, H.; Meng, X. Method of making hydrogenated metathesis products. PCT Int. WO 2007081987 A2, July 19, 2007.

(198) Li, X.; Zhang, W.; Liu, S.; Han, X.; Xu, L.; Bao, X. J. Mol. Catal. A: Chem. **2006**, 250, 94–99.

(199) Li, X.; Zhang, W.; Liu, S.; Xu, L.; Han, X.; Bao, X. J. Catal. 2007, 250, 55–66.

(200) Li, X.; Zhang, W.; Liu, S.; Xu, L.; Han, X.; Bao, X. J. Phys. Chem. C 2008, 112, 5955–5960.

(201) Aritani, H.; Fukuda, O.; Miyaji, A.; Hasegawa, S. *Appl. Surf. Sci.* **2001**, *180*, 261–269.

(202) Hahn, T.; Bentrup, U.; Armbrüster, M.; Kondratenko, E. V.; Linke, D. *ChemCatChem* **2014**, *6*, 1664–1672.

(203) Hahn, T.; Kondratenko, E. V.; Linke, D. *Chem Commun.* 2014, Advance Article; 10.1039/C4CC01827C.

(204) Debecker, D. P.; Stoyanova, M.; Colbeau-Justin, F.; Rodemerck, U.; Boissière, C.; Gaigneaux, E. M.; Sanchez, C. Angew. Chem., Int. Ed. **2012**, *51*, 2129–2131.

(205) Debecker, D. P.; Colbeau-Justin, F.; Sanchez, C.; Chaumonnot, A.; Berthod, M. Method of olefin metathesis using a catalyst based on a spherical material comprising oxidised metal particles trapped in a mesostructured matrix. PCT Int. WO2013011209 A1, January 24, 2013.

(206) Ross-Medgaarden, E. I.; Wachs, I. E. J. Phys. Chem. C 2007, 111, 15089–15099.

(207) van Schalkwyk, C.; Spamer, A.; Moodley, D. J.; Dube, T.; Reynhardt, J.; Botha, J. M.; Vosloo, H. C. M. *Appl. Catal., A* **2003**, *255*, 143–152.

(208) Spamer, A.; Dube, T. I.; Moodley, D. J.; van Schalkwyk, C.; Botha, J. M. Appl. Catal., A **2003**, 255, 133–142.

(209) van Roosmalen, A. J.; Mol, J. C. J. Catal. 1982, 78, 17-23.

(210) Thomas, R.; Moulijn, J. A.; De Beer, V. H. J.; Medema, J. J. Mol. Catal. **1980**, 8, 161–174.

(211) van Roosmalen, A. J.; Koster, D.; Mol, J. C. J. Phys. Chem. 1980, 84, 3075-3079.

(212) Verpoort, F.; Fiermans, L.; Bossuyt, A. R.; Verdonck, L. J. Mol. Catal. **1994**, 90, 43–52.

(213) Verpoort, F.; Bossuyt, A.; Verdonck, L. Chem. Commun. 1996, 3, 417–418.

(214) Verpoort, F.; Bossuyt, A. R.; Verdonck, L. J. Electron Spectrosc. Relat. Phenom. 1996, 82, 151–163.

(215) Hua, D.; Chen, S.; Yuan, G.; Wang, Y.; Zhang, L. Trans. Metal Chem. 2011, 36, 245-248.

(216) Hua, D.; Chen, S.; Yuan, G.; Wang, Y.; Zhao, Q.; Wang, X.; Fu, B. *Microporous Mesoporous Mater.* **2011**, *143*, 320–325.

(217) Chaemchuen, S.; Phatanasri, S.; Verpoort, F.; Sae-ma, N.; Suriye, K. *Kinet. Catal.* **2012**, 53 (2), 247–252.

(218) Liu, N.; Ding, S.; Cui, Y.; Xue, N.; Luming Peng, L.; Guo, X.; Ding, W. Chem. Eng. Res. Des. 2013, 91, 573–580.

(219) Huang, S.; Liu, S.; Zhu, Q.; Zhu, X.; Xin, W.; Liu, H.; Feng, Z.; Li, C.; Xie, S.; Wang, Q.; Xu, L. Appl. Catal., A 2007, 323, 94–103.

(220) Maksasithorn, S.; Debecker, D. P.; Praserthdam, P.; Panpranot, J.; Suriye, K.; Ayudhya, S. K. N. *Chin. J. Catal.* **2014**, 35, 232–241.

(221) Le Roux, E.; Taoufik, M.; Baudouin, A.; Coperet, C.; Thivolle-Cazat, J.; Basset, J.; Maunders, B. M.; Sunley, G. J. Adv. Synth. Catal. 2007, 349, 231–237.

(222) Gauvin, R. M.; Coutelier, O.; Berrier, E.; Mortreux, A.; Delevoye, L.; Paul, J.; Mamede, A.; Payen, E. *Dalton Trans.* 2007, 3127–3130.

(223) Mazoyer, E.; Merle, N.; de Mallmann, A.; Basset, J.; Berrier, E.; Delevoye, L.; Paul, J.; Nicholas, C. P.; Gauvin, R. M.; Taoufik, M. *Chem. Commun.* **2010**, *46* (47), 8944–8946.

(224) Basrur, A. G.; Patwardhan, S. R.; Vyas, S. N. J. Catal. 1991, 127 (1), 86–95.

(225) Cheng, Z.; Lo, C. ACS Catal. 2012, 2, 341-349.

(226) Davazoglou, D.; Moutsakis, A.; Valamontes, V.; Psycharis, V.; Tsamakis, D. J. Electrochem. Soc. **1997**, 144, 595–599.

(227) Wang, Y.; Chena, Q.; Yang, W.; Xie, Z.; Xua, W.; Huang, D. Appl. Catal, A 2003, 250, 25–37.

(228) Spamer, A.; Dube, T. I.; Moodley, D. J.; van Schalkwyk, C.; Botha, J. M. *Appl. Catal.*, A **2003**, 255, 153–167.

(229) Thomas, R.; Moulijn, J. A. J. Mol. Catal. 1982, 15, 157-172.

(230) Andreini, A.; Mol, J. C. J. Colloid Interface Sci. 1981, 84, 57-65.

(231) Debecker, D. P.; Stoyanova, M.; Rodemerck, U.; Colbeau-Justin, F.; Boissere, C.; Chaumonnot, A.; Bonduelle, A.; Sanchez, C. *Appl. Catal.*, A **2014**, 470, 458–466.

(232) Huang, S.; Chen, F.; Liu, S.; Zhu, Q.; Zhu, X.; Xin, W.; Feng, Z.; Li, C.; Wang, Q.; Xu, L. J. Mol. Chem. A: Chem. 2007, 267, 224–233.

(233) Conley, M. P.; Mougel, V.; Peryshov, D. V.; Forrest, W. P., Jr.; Gajan, D.; Lesage, A.; Emsley, L.; Coperet, C.; Schrock, R. R. J. Am. Chem. Soc. **2013**, 135, 19068–19070.

(234) Popp, K. E.; Krawczyk, M. A.; Nicholas, C. P.; Abrahamian, J. F. Support Properties of Silica Supported Catalysts and Their Use in Olefin Metathesis. U.S. Patent 20110196184 A1. August 11, 2011.

(235) Krawczyk, M. A.; Popp, K. E.; Nicholas, C. P.; Abrahamian, J. F. Acid Washed Silica Supported Catalysts and Their Use in Olefin Metathesis. U.S. Patent 20110196185 A1. August 11, 2011.

(236) Mueller, K.; Dyllick-Brenzinger, R.; Limbach, M.; Sturm, B. Method for producing an aqueous polymer dispersion using watersoluble metal carbene complexes as catalysts. PCT Int. WO 2011051374 A1, May 5, 2011.

(237) Schrock, R. R.; King, A. J.; Zhao, Y.; Flook, M. M.; Hoveyda, A. H. Highly z-selective olefins metathesis. U.S. Patent 20110077421 A1. March 31, 2011.

(238) Butler, J. R. Isomerization catalyst supported metathesis catalyst for olefin production from feedstock containing blend of terminal and internal olefins. U.S. Patent 20110077444 A1. March 31, 2011.

(239) Botha, J. M.; Dube, T. I.; Moodley, D. J.; Spamer, A.; Van Schalkwyk, C. Silica-supported tungsten oxide catalysts for metathesis of α -olefins for production of linear internal C8–20-olefins. PCT Int. WO 2004016351 A1. February 26, 2004.

(240) Xuan, D.; Wang, Y.; Liu, S.; Yang, W. Method for synthesis of hexane by metathesis of butylene. CN 102040454 A. August 14, 2013.

(241) Basset, J.; Stoffelbach, F.; Taoufik, M.; Thivolle-Cazat, J. PCT Int. WO 2008001040 A1. January 3, 2008.

(242) Sugawara, T. Manufacture of cyclo-olefin polymers by metathesis polymerization for monomer-free moldings without causing corrosion of molds. JP 2001131264 A. May 15, 2011.

(243) Schubert, M.; Gerlach, T.; Hesse, M.; Stephan, J.; Bohm, V.; Brodhagen, A.; Poplow, F. Preparation of olefins or alkynes by metathesis of alkenes or alkynes over a transition metal carbide or oxycarbide catalyst. U.S. Patent 20040220441 A1. November 4, 2004.